ES EN
Vol. 21. Núm. 2. 2015. Páginas 67-70

Neuroscience and education: We already reached the tipping point

[Neurociencia y educación: ya hemos alcanzado el punto crítico]

Manuel Mart√≠n-Loeches1 1Centro de Evoluci√≥n y Comportamiento Humanos, Madrid, Espa√Īa

Abstract

The aim of this contribution is to introduce the present Special Issue on Neuroscience and Education ofthe Revista de Psicología Educativa/Educational Psychology. After a brief introduction to current advancesin general cognitive neuroscience that are being possible by means of brain imaging techniques availableonly during the most recent decades, we will discuss some aspects that have been contributing to hampera true integration between both disciplines (neuroscience and education). The articles included in thepresent monograph provide empirical evidence that neuroscience has already reached a sufficient bodyof knowledge as to substantially improve education and political decisions in this respect. Neurosciencereveals that brain maturation extends at least until the second decade of life and that the exposition todifferent developmental experiences and opportunities is crucial along this extensive life period, so thatnone of its phases should be downplayed. 

Resumen

Esta contribución pretende introducir y contextualizar el presente monográfico de la Revista de PsicologíaEducativa/Educational Psychology sobre neurociencia y educación. Tras introducir brevementelos avances que en neurociencia cognitiva, en general, se están alcanzando gracias a las técnicas deimagen cerebral disponibles sólo en las últimas décadas, se discuten algunos aspectos que han hechodifícil la verdadera integración entre ambas disciplinas (la neurociencia y la educación). Los artículosincluidos en este monográfico demostrarán que la neurociencia ofrece una cantidad más que suficientede conocimiento acumulado como para aportar sustancialmente a la educación y a las políticas educativas.La neurociencia revela que la maduración cerebral no se alcanza hasta la segunda década de vidade la persona y que la exposición a diferentes experiencias y oportunidades de desarrollo es crucial a lolargo de toda esta extensa etapa vital, sin que debamos descuidar unos momentos más que otros. 

Educational Neuroscience and Its Contribution to Education

Neuroscience is currently trendy, particularly the so-called cognitive neuroscience , the portion of neuroscience devoted to study the relationships between the nervous system and human cognition ( Gazzaniga, Ivry, & Mangun, 2002 ). It is logical. Up to about 20 years ago, all evidence on the brain bases of human behavior was based on the study of anomalous or damaged brains, or with some outstanding developmental disorder. In the very last decades, however, and mainly by virtue of the advances in computational facilities, modern brain imaging techniques have conveyed a noticeable boost in the study of living, intact brains while persons perform any kind of mental or cognitive operation.

The improvement has been so noticeable that many topics traditionally viewed as ‚Äėtaboo‚Äô in academic psychology are now being afforded by means of these techniques and with great success. Social interactions, consciousness, religion, moral, or artistic appraisal are just a few of the many topics that are currently being possible to be objectively approached thank to the development of these techniques. As expectable, many of the goals attained in the area transcend to the public opinion, with great success. After all, cognitive neuroscience is facilitating the advancement in our understanding of us, while the human being is curious by nature. The big advantage of these technical developments is that they permit the objective study of these phenomena, surpassing the limitations of subjective access to information in course. Studies like those by Whalen and collaborators (e.g., Kim et al., 2010; Whalen et al., 2004 ), among many others, showing the capacity of the human brain to capture and process social information appearing less than 20 milliseconds and, therefore, out of conscious perception and control, are in my view outstanding examples of the type of findings that these techniques are making available. This entire endeavour is nevertheless just starting.

One of the oldest brain imaging techniques is electroencephalography (EEG) and its derived technique the evoked or event-related potentials (EP or ERP). Although it was originally developed in the twenties of the last 20 th century, its applicability to studying numerous mental and behavioral phenomena has always been very limited until the advent of modern computation, which has permitted in the last decades treating huge amounts of EEG data in a sophisticated and complex manner. In turn, an easily available and low-cost technology has been able to grow as a powerful tool in the objective and quantifiable approach to human mind. To these advantages we should add its portability, so that we can study brain in virtually any context. Its ‚Äúsister‚ÄĚ technique, the magnetoencephalography (MEG) is much less available and not at all portable. The most well-known technique, on the other hand, the trendiest one indeed ‚Äď both in academic and in popular contexts ‚Äď is the measurement of brain blood flow (which follows synaptic activations) through al magnetic resonance imaging (fMRI). This technique exhibits a millimetre spatial resolution, while being much less invasive tan its sister technique the positron emission tomography (PET). Further, very recently, MRI has been developed (in its structural, i.e., non-al version) as to approach valuable details of the numerous brain internal connections; we can therefore study individual neural circuits established along an individual's lifespan, which conveys important al implications. Although fMRI is not a portable technique, in recent years a new and portable method is also available that permits the measurement of blood flow in the cortex in different contexts and situations, with higher degrees of ecological validity; this technique is known as near-infrared spectroscopy (NIRS). It is also relatively available, even if less than EEG. These are, overall, the main current neuroimaging techniques (for a review see, e.g., Crosson et al., 2011 ) that are currently shaking up the cognitive neurosciences.

But, as mentioned, even if there is already a big amount of data and studies with these techniques available ‚Äď and there is currently a real explosion in this regard ‚Äď we are only at the very ning. This point is of relevance when we get into the topic of interest here, neuroscience applied to education, in order to better understand some of the current discussions.

In this regard, there is currently a hot debate, which started several years ago, on whether neuroscience is actually useful for education, whether the former really contributes to the latter ( Ansari, Coch, & De Smedt, 2011 ). The debate is not finished at all but, as we will be able to notice in this special issue, it might be the moment to start closing it. Neuroscience has a lot to contribute to education, and in the future it will be increasingly the case of its contribution to this field of the highest relevance for human social, cognitive, and emotional development. For someone like the present author, who has been teaching basic neuroscience to students who will become teachers, the reach and the robustness of these arguments is of crucial relevance.

The Present Special Issue

On the one hand, as claimed by several authors (e.g., Willingham, 2009 ), neuroscience and education speak completely different languages and have different goals, so that they seem to belong to two totally different worlds. That is correct, and this has been indeed one of the very reasons for possible clash. In this regard, Janet Zadina proposes, in the first article of this special issue, the development of new specialists that are both neuroscientists and educators ( Zadina, 2015 ). A wide and deep training in neuroscience, together with real and extensive practices teaching at school, is what the author proposes in the curriculum of a cognitive neuroscientist , a degree from which our society could earn large benefits. But even if this kind of specialization is still taking form or becomes established, it is not currently necessary to wait longer to see how neuroscience can help education. Zadina, as several other authors in the present issue, reckons a number of findings already achieved by neuroscience that are (or have the potential to be) directly beneficial for both educational policies and students‚Äô curricula. I totally agree with Zadina when she explicitly claims that it is not necessary to wait any longer for educational neuroscience to inform curriculum, ‚Äúwe have reached the tipping point‚ÄĚ.

In line with this, the next article in this special issue by Leisman, Mualem, and Mughrabi (2015) , provides an extensive review on what neuroscience already knows about brain development, about the differences between critical and sensitive developmental periods as well as on how brain maturation emerges at different times in different brain regions. To do this, the authors use both current and past research, collected for more than a century of work in neuroscience since Ram√≥n y Cajal's times. Genetics and epigenetics of brain development are treated in depth and assimilated in Leisman et al.‚Äôs paper. These authors stress in this respect how fundamental it is the complete ‚Äď in all its potentialities ‚Äď development of each brain region at its corresponding time, in order to be able to plainly further build up the next stages in cognitive, emotional, and social development.

A good example of how the most basic (perceptive and motor) processes are developed first and are needed working properly and suitably to base subsequent knowledge and developmental stages is provided in the article by Usha Goswami (2015) , also in this issue. Indeed, the quality of information usually considered as basic will be conditioning the succeeding development of school processes as relevant as alphabetization. In addition, neuroscience has been able to unveil features of these processes that would not have been pondered as so crucial as they indeed are in absence of neuroimaging techniques. Namely, Goswami's work remarks the utility of EEG to determine the proficiency in sound, phonological, and prosodic segmentation of a child who still cannot talk, but of whom we could already say whether he or she will probably demonstrate difficulties when learning to read years later. Similarly, with this technique it is possible to objectively evaluate whether the different tasks and exercises that children play at school during early childhood, presumably enhancing children's phonological awareness as well as sound and linguistic segmentation (e.g., clapping out syllable rhythms in a song) are actually yielding the desired developmental effects. EEG appears therefore as a highly valuable tool both for early diagnosis and appropriate treatment, since neuroscience has shown that dyslexia is essentially predisposed by auditory aspects of language, these possibly carrying even much more weight than aspects of other modalities. Considering that in many hospitals it is currently routine to measure auditory capacity in newborns by means of a simple evoked potentials device (as mentioned, derived from EEG), it would not be out of place to see similar devices to easily measure at school the individual's brain capacity to synchronize to different acoustic and linguistic features. Subsequent school achievements would highly benefit.

But, as already remarked by Leisman et al. (2015) , the maturation of the nervous system extends very far beyond the first 3 years of life, as traditionally claimed. The latter assertion was derived from animal studies; to the extent that the study of the living human brain has been possible thanks to the development of brain imaging techniques, the state of affairs has turned a little more complex. Neuroscience has been able to establish, in this regard, that brain maturation in human concerns the two first decades of life. This is further emphasized by Lipina and Segretin (2015) in the following article in this special issue, proposing that to ‚Äúthe first 1000 days‚ÄĚ as crucial for brain development we should add up 6000 additional days. The centrality of this point is of the highest interest for educational policies and for preventing failure at school, as well as for the cognitive and emotional development of the child. For this reason, as stressed by Lipina and Segretin, intensive programs aimed at compensating the effects of poverty on cognitive and emotional development should be extended far beyond the first thousand days in a child's life. The authors present empirical evidence supporting this proposal. They show, in addition, that although maturation delays occurring in the following 6000 days are not necessarily irreversible, compensating their effects s big effort, something to which in turn most of these children will not have access.

The special issue ends with two complementary articles demonstrating what the processes of brain maturation shortly before reaching the second decade of life are. During adolescence, and contrary to what is usually believed, the determinant factors are not necessarily hormones or contextual and social vicissitudes as such. Rather, during this period of life, which has normally received much less attention from an educational and pedagogical viewpoint than other, earlier periods, maturational processes are still in progress. Further, these maturational processes specifically concern brain regions that are critical not only for social cognition and self-consciousness, but for problem solving and abstract thinking as well, as remarked by Iroise Dumontheil (2015) in her article. The adolescence period becomes therefore crucial to plainly accomplish the brain faculties of an adult, and therefore what occurs during this period should be of the highest educational interest. Dumontheil (2015) shows that adolescents exhibit ‚Äúover-mentalising‚ÄĚ, that is, their social cognition and their attribution of intentions ‚Äď in other words, their ‚Äútheory of mind‚ÄĚ ‚Äď is extremely alert, needing bigger efforts in order to achieve the same proficiency of an adult. This is supported by hiperactivations in adolescents of specific portions in the prefrontal cortex during the ‚ÄúDirector‚ÄĚ task, which explores the capacity to shift the viewpoint and that can be suitably studied in fMRI contexts. Plain performance in theory of mind is therefore not fully developed until adulthood, being in turn a crucial factor in achieving optimal and complex cognitive proficiency as adults ( Gamble, Gowlett, & Dumbar, 2014 ). In a complementary line, the article by Catherine Sebastian (2015) extends these data, applying different experimental paradigms that permit to study in depth the degree of development in theory of mind and, particularly, responses to social rejection. The latter is approached in fMRI environments through the ‚ÄúCyberball‚ÄĚ paradigm, in which the recorded participant is systematically excluded by two other (virtual) players in a simulated game. The results again point to portions of the prefrontal cortex as fundamental for these processes, showing how the brain of adolescents is still immature in brain regions that are critical for most complex cognition, decision taking in diverse contexts, and even for individual liberty as a person. Overall, there is no cognition without emotion, as supported by neuroscientific evidence ( Pessoa, 2013 ), and a correct balanced interaction between these two domains is fundamental to achieve all the potentialities of the human brain. Experimental results how the adolescent's brain is, in this regard and in the words of Sebastian, a ‚Äėfast car with poor brakes‚Äô.

In conclusion, the contributions in this monograph ‚Äď for which we are really thankful to all the authors ‚Äď provide definite evidence on the relevance of neuroscience for educational and pedagogic matters, even in its current state. It is not necessary to wait any longer; there is already sufficient neuroscientific knowledge. The most exhilarating is, however, that the future of educational neuroscience appears highly fruitful and promising.

Resumen extenso

La neurociencia est√° de moda, y especialmente la as√≠ llamada ‚Äúneurociencia cognitiva‚ÄĚ, la parte de la neurociencia que se dedica espec√≠ficamente al estudio de las relaciones entre el sistema nervioso y la cognici√≥n humana ( Gazzaniga et al., 2002 ). Es l√≥gico. Hasta hace unos 20 a√Īos, toda evidencia cient√≠fica acerca de las bases cerebrales o neurales de nuestro comportamiento ven√≠a del estudio de cerebros con alguna anomal√≠a, bien por lesi√≥n, bien por alteraciones no del desarrollo cerebral o en el transcurso de una operaci√≥n a cerebro abierto. En las √ļltimas d√©cadas, coincidiendo en gran medida con el desarrollo de la tecnolog√≠a inform√°tica, tambi√©n llamada ‚Äúla tercera revoluci√≥n industrial‚ÄĚ, las t√©cnicas de neuroimagen han supuesto un impresionante impulso para el estudio del cerebro vivo, sin tocarlo, mientras la persona realiza todo tipo de actividades mentales o cognitivas.

Tal ha sido el impulso, que muchos temas que tradicionalmente se han considerado ‚Äútab√ļ‚ÄĚ dentro de la psicolog√≠a se est√°n abordando mediante estas t√©cnicas con gran √©xito. Las interacciones sociales, la conciencia, la religi√≥n, la moral o la percepci√≥n art√≠stica son s√≥lo algunos de los muchos t√≥picos que se est√°n pudiendo abordar de manera objetiva gracias al desarrollo de estas t√©cnicas. Es normal que muchos de los logros alcanzados trasciendan a la opini√≥n p√ļblica y tengan gran √©xito. No en vano, la neurociencia cognitiva nos est√° permitiendo avanzar en nuestro conocimiento sobre nosotros mismos, sobre nuestra propia esencia, y el ser humano es curioso por naturaleza. La ventaja que tienen estos avances es la de poder estudiar todos estos fen√≥menos de manera objetiva, superando las limitaciones de un acceso subjetivo a la informaci√≥n en curso. Estudios como los del grupo de Whalen y colaboradores (e.g., Kim et al., 2010; Whalen et al., 2004 ), entre otros muchos, que demuestran la capacidad de nuestro cerebro para captar informaci√≥n social que aparece durante menos de 20 milisegundos y, por tanto, totalmente fuera de nuestro control y alcance consciente, son para m√≠ un gran ejemplo de lo que nos est√°n permitiendo estas t√©cnicas.

Pero por muy cuantioso que sea el n√ļmero de trabajos realizados hasta la fecha mediante estas t√©cnicas ‚Äďy est√° habiendo en estos momentos una verdadera explosi√≥n‚Äď estamos s√≥lo al principio. Este dato es importante a la hora de adentrarnos en el campo que aqu√≠ nos ocupa, la neurociencia aplicada a la educaci√≥n, y entender algunas de las discusiones actualmente en boga.

En este sentido existe un enconado debate, abierto desde hace a√Īos, respecto a si realmente es √ļtil la neurociencia para la educaci√≥n, si aqu√©lla aporta algo de utilidad para √©sta ( Ansari et al., 2011 ). El debate no est√° cerrado del todo pero, como tendremos ampliamente la oportunidad de comprobar en este monogr√°fico, se podr√≠a ir dando por zanjado. La neurociencia tiene mucho que aportar a la educaci√≥n, y en el futuro a√ļn tendr√° mucho m√°s que aportar a este campo tan importante del desarrollo social, cognitivo y emocional del ser humano. Para alguien como este autor, que lleva m√°s de una d√©cada ense√Īando nociones b√°sicas de neurociencia a estudiantes que ser√°n futuros maestros, el alcance y la solidez de nuestros argumentos resultan de crucial importancia.

Por un lado, como sostienen ciertos autores (e.g., Willingham, 2009 ), neurociencia y educaci√≥n hablan dos lenguajes distintos y tienen objetivos distintos, de manera que parecen pertenecer a dos mundos distintos. Es cierto, y precisamente esta ha sido una de las razones de un posible desencuentro. A este respecto, Janet Zadina propone, en el primer art√≠culo de este monogr√°fico, la creaci√≥n de una especialidad en la que los profesionales que salgan sean a la vez neurocient√≠ficos y educadores ( Zadina, 2015 ). Una formaci√≥n amplia, profunda y suficiente en neurociencia, junto con la realizaci√≥n de pr√°cticas reales y cuantiosas de ense√Īanza en las escuelas es lo que esta autora propone como formaci√≥n para el neurocient√≠fico educativo , una titulaci√≥n de la que nuestra sociedad podr√≠a obtener grandes beneficios. Pero mientras esta titulaci√≥n cobra cuerpo o se establece, no ser√≠a necesario esperar m√°s para ver los beneficios que la neurociencia puede aportar ya a la educaci√≥n. Zadina, al igual que otros autores del presente monogr√°fico, enumera una serie de conocimientos que ya se han alcanzado por parte de la neurociencia y que tienen (o pueden tener) beneficios directos en las pol√≠ticas educativas y en los curr√≠culos de los alumnos. Para Zadina, y no puedo estar m√°s de acuerdo, ya no hace falta esperar m√°s: los neurocient√≠ficos, junto con otros profesionales cualificados, ya deber√≠an formar parte de los grupos que toman las decisiones a este respecto, muy por delante de pol√≠ticos o intereses econ√≥micos. No es pronto para que esto ocurra, ‚Äúya hemos llegado al punto cr√≠tico‚ÄĚ ( Zadina, 2015).

Los art√≠culos incluidos en el presente monogr√°fico muestran multitud de evidencias en este sentido. El art√≠culo de Leisman, Mualem y Mughrabi (2015) aporta un extenso repaso de lo que la neurociencia sabe hoy d√≠a acerca del desarrollo del cerebro, de las diferencias entre per√≠odos cr√≠ticos y sensibles y de c√≥mo la maduraci√≥n cerebral se da en distintos momentos para las distintas regiones. Un buen ejemplo de c√≥mo los procesos m√°s b√°sicos (perceptivos y motores) se desarrollan en primer lugar y se necesita de su correcto y completo desarrollo para fundamentar conocimientos y etapas de desarrollo subsiguientes lo tenemos en el art√≠culo de Usha Goswami (2015) , tambi√©n en este n√ļmero. Efectivamente, la calidad de la informaci√≥n que consideramos b√°sica ser√° determinante en el desarrollo posterior de procesos escolares tan relevantes como la alfabetizaci√≥n. La neurociencia tambi√©n ha permitido establecer que la maduraci√≥n cerebral en el humano abarca las dos primeras d√©cadas de vida. En este aspecto insisten Lipina y Segretin (2015) en el siguiente art√≠culo del monogr√°fico, proponiendo que a los tradicionales ‚Äúprimeros 1000 d√≠as‚ÄĚ de vida como per√≠odo de suma importancia para el desarrollo cerebral de una persona habr√≠a que a√Īadir otros 6000 d√≠as m√°s. La relevancia de esta cuesti√≥n es capital para las pol√≠ticas educativas y de prevenci√≥n del fracaso escolar y el desarrollo cognitivo y emocional del ni√Īo. El monogr√°fico termina con dos art√≠culos complementarios que ponen en evidencia cu√°les son los procesos de desarrollo madurativo del cerebro que se dan poco antes de alcanzar la segunda d√©cada de vida. En la adolescencia, contra lo que se suele creer, no son necesariamente las hormonas los factores determinantes, ni los cambios contextuales o sociales en s√≠ mismos. Durante esta etapa de la vida, a la que quiz√° se le haya prestado menos importancia desde el punto de vista educativo y pedag√≥gico, se producen maduraciones cerebrales que son clave no s√≥lo para la cognici√≥n social y la autoconciencia sino para la resoluci√≥n de problemas y el pensamiento abstracto, como afirman Iroise Dumontheil (2015) y Catherine Sebastian (2015) en sus art√≠culos.

No es necesario esperar m√°s, ya hay suficiente conocimiento √ļtil acumulado. Lo ilusionante es, adem√°s, que el futuro de la neurociencia educativa se antoja sumamente fruct√≠fero y prometedor.

Conflict of Interest

The author of this article declares no conflict of interest.

References
Ansari et al., 2011
D. Ansari
D. Coch
B. De Smedt
Connecting education and cognitive neuroscience: Where will the journey take us?
Educational Philosophy and Theory
43
2011
37-42
Crosson et al., 2011
B. Crosson
A. Ford
K.M. McGregor
M. Meinzer
S. Cheshkov
X. Li
R.W. Briggs
Functional imaging and related techniques: An introduction for rehabilitation researchers
Journal of Rehabilitation Research & Development
47
2011
Dumontheil, 2015
I. Dumontheil
Development of the social brain during adolescence
Psicología Educativa
21
2015
Gamble et al., 2014
C. Gamble
J. Gowlett
R. Dumbar
Thinking Big: How the Evolution of Social Life Shaped the Human Mind
2014
Gazzaniga et al., 2002
M.S. Gazzaniga
R. Ivry
G.R. Mangun
Cognitive Neuroscience: The Biology of the Mind
2002
Goswami, 2015
U. Goswami
Neurociencia y Educaci√≥n: ¬ŅPodemos ir de la investigaci√≥n b√°sica a su aplicaci√≥n? Un posible marco de referencia desde la investigaci√≥n en dislexia
Psicología Educativa
21
2015
Kim et al., 2010
M.J. Kim
R.A. Loucks
M. Neta
F.C. Davis
J.A. Oler
E.C. Mazzula
P.J. Whalen
Behind the mask: the influence of mask-type on amygdala response to fearful faces
Soial, Cognitive and Affective Neuroscience
5
2010
363-8
Leisman et al., 2015
G. Leisman
R. Mualem
S.K. Mughrabi
The neurological development of the child with the educational enrichment in mind
Psicología Educativa
21
2015
Lipina and Segretin, 2015
S.J. Lipina
M.S. Segretin
6000 días más: evidencia neurocientífica acerca del impacto de la pobreza infantil
Psicología Educativa
21
2015
Pessoa, 2013
L. Pessoa
The Cognitive-Emotional Brain: From Interactions to Integration
2013
Sebastian, 2015
C. Sebastian
Social cognition in adolescence: social rejection and theory of mind
Psicología Educativa
21
2015
Whalen et al., 2004
P.J. Whalen
J. Kagan
R.G. Cook
F.C. Davis
H. Kim
S. Polis
T. Johnstone
Human amygdala responsivity to masked fearful eye whites
Science
306
2004
2061-5
Willingham, 2009
D.T. Willingham
Three problems in the marriage of neuroscience and education
Cortex
4
2009
544-5
Zadina, 2015
J. Zadina
The emerging role of educational neuroscience in education reform
Psicología Educativa
21
2015

Copyright © 2018. Colegio Oficial de Psicólogos de Madrid

© Copyright 2018. Colegio Oficial de Psicólogos de Madrid ContactPrivacy PolicyCookies Policy

We use our own and third­party cookies. The data we compile is analysed to improve the website and to offer more personalized services. By continuing to browse, you are agreeing to our use of cookies. For more information, see our cookies policy

Aceptar