
Artificial Neural Networks (ANNs) have emerged as the 
cornerstone of modern Artificial Intelligence (AI), revolutionizing the 
field and enabling unprecedented advancements in machine learning 
and cognitive computing. These computational models, inspired 
by the biological neural networks found in animal brains, form the 
foundation upon which many of today’s most sophisticated AI systems 
are built. By mimicking the interconnected structure of neurons 
and synapses, ANNs have demonstrated remarkable capabilities in 
pattern recognition, decision-making, and complex problem-solving 

across a wide array of domains. As the driving force behind deep 
learning algorithms, ANNs have become instrumental in pushing the 
boundaries of AI, from natural language processing and computer 
vision to autonomous systems and predictive analytics.

The impact of ANNs and AI extends far beyond traditional computer 
Science applications, finding increasing relevance in the realm of 
behavioral Sciences. As researchers seek to unravel the complexities 
of human behavior, cognition, and social interactions, these advanced 
computational tools offer new avenues for analysis and prediction.
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A B S T R A C T

Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are 
increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on 
implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial 
guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with 
psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and 
polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with 
backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range: 
.81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health 
Sciences and other fields, bridging the gap between theory and practical implementation.

Decodificando la inteligencia artificial: Un tutorial sobre redes neuronales en las 
Ciencias del Comportamiento

R E S U M E N

Introducción: Las Redes Neuronales Artificiales (RNA), especialmente los perceptrones multicapa (MLPs) con retropropagación, 
son cada vez más utilizadas en Ciencias del Comportamiento y de la Salud para analizar datos. Este artículo presenta un 
tutorial completo sobre la implementación de modelos MLP con retropropagación para tareas de regresión y clasificación 
usando Python. Método: El tutorial guía paso a paso la construcción de un MLP con retropropagación utilizando una matriz de 
datos simulados (N = 1,000) con variables psicológicas, demostrando la versatilidad de las RNA en la predicción de variables 
continuas y clasificación de (binarios y politómicos). Se incluyen scripts de Python y su interpretación detallada. Resultados: Los 
modelos MLP muestran eficacia en regresión (R² = 0.71) y clasificación (AUC binaria = .93, rango AUC politómica: .81-.93) en los 
tests. Conclusiones: Este tutorial persigue desmitificar las RNA y promover su uso en Ciencias del Comportamiento y la Salud, 
facilitando la transición de la teoría a la práctica.
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Moreover, recent studies have shown that machine learning 
algorithms can effectively analyze complex behavioral data to 
uncover intricate patterns related to psychological well-being 
and decision-making processes, demonstrating the power of AI in 
identifying and understanding multifaceted psychological issues 
(Vezzoli & Zogmaister, 2023). The ability of ANNs to process high-
dimensional data allows researchers to explore complex relationships 
among various psychological constructs, thereby addressing 
limitations inherent in traditional statistical methods. This capability 
is particularly significant in understanding mental health issues 
where interactions among biological, emotional, cognitive, and 
environmental factors are critical.

Thus, ANNs are being of great use in modeling and understanding 
cognitive processes such as the learning of abstract concepts (Piloto 
et al., 2022; Roads & Mozer, 2021), the production and understanding 
of natural language (Arana et al., 2024), the detection of emotional 
patterns from facial recognition (Faltyn et al., 2023; Song, 2021; Wei 
et al., 2021) or from written language (Qamar et al., 2021).

In the field of clinical psychology, these techniques have been used 
in the detection of internet users with suicidal intentions (Schoene 
et al., 2023), the prediction of maladaptive behaviors (low academic 
performance, drug use, delinquency, etc.) (McKee et al., 2022) or in 
the identification of the optimal psychological treatment according 
to the patient’s characteristics (Hollon et al., 2019).

Developmental and educational psychology has also benefited 
from the use of ANNs in the detection of autism through language 
(Wawer & Chojnicka, 2022), in the prediction of emotional and 
behavioral risk status in children (Wang et al., 2021) or in identifying 
student satisfaction with different learning modalities (Ho et al., 
2021).

Finally, the application of ANNs in the field of social psychology 
has focused in the detection of consumer needs and behavior towards 
product features (Barnes, 2022; Li et al., 2024), predicting the use of 
social networks (Ramírez et al., 2021) or in identifying the effects of 
social comparison among social network users (Jabło ska & Zajdel, 
2020).

As can be observed, the application of AI methodologies in 
Behavioral, Social, and Health Sciences is rapidly expanding, 
with potential uses ranging from diagnosis and prediction to 
understanding human development and functioning (Hassani et 
al., 2020). By harnessing the strengths of ANNs, researchers can 
gain deeper insights into human behavior and cognition, paving 
the way for innovative approaches to psychological assessment and 
intervention.

The Multilayer Perceptron (MLP) and the Backpropagation 
Learning Algorithm: The Most Prevalent ANN

There are currently many ANN models that are used in various 
fields of application in data analysis. Among these models, one of the 
most widely used is the multilayer perceptron (MLP) associated with 
the backpropagation error learning algorithm (Henninger et al., 2023), 
also called backpropagation network (Rumelhart et al., 1986). The 
main virtue of a MLP network that explains its widespread use in the 
field of data analysis is that it is a universal function approximator. The 
mathematical basis for this statement is due to Kolmogorov (1957), 
who found that a continuous function of different variables can be 
represented by the concatenation of several continuous functions of 
the same variable. This means that a perceptron containing at least 
one hidden layer with enough non-linear units could learn virtually 
any kind of relation if it can be approximated in terms of a continuous 
function (Hornik et. al., 1989).

The backpropagation algorithm or one of its variants forms the 
basis of today’s deep learning in ANN models such as Long Short 
Term Memory (LSTM) (backpropagation through time) (Hochreiter 

& Schmidhuber, 1997), Convolutional Neural Networks (CNN) 
(LeCun et al., 1998), Deep Belief Networks (DBN) (Hinton et al., 
2006), or Generative Adversarial Networks (GAN) (Goodfellow et 
al, 2014).

Objectives of the Tutorial

The aim of this paper is to provide a tutorial for introducing 
researchers in the Behavioral and Health Sciences to the use 
of ANNs. This tutorial focuses on both regression (continuous 
outcomes) and classificatory (categorical outcomes: binary and 
polytomous) ANNs applications. To accomplish this goal, we 
present a step-by-step methodology for applying MLP with the 
backpropagation algorithm. We also provide a Python script that 
enables its implementation, utilizing the data described in the 
Dataset Generation subsection for regression and classification 
tasks. The script is designed for easy adaptation to any dataset 
involving regression or classification problems. Our aim is to make 
this resource valuable for researchers across various disciplines, 
enabling them to readily incorporate ANNs into their respective 
fields of study.

Dataset Generation

A simulated dataset was created to embrace the relationships 
among psychological and demographic variables that influence 
psychological wellbeing, the primary outcome variable, in a sample 
of 1,000 individuals. The predictor variables consisted of gender 
(50.7% female), age (ranging from 18 to 85 years, mean = 51.63, Mdn 
= 52, SD = 17.11), and socioeconomic status, categorized as low (n = 
343), medium (n = 347), and high (n = 310). Additional predictors 
included emotional intelligence (range: 24-120, M = 71.97, Mdn = 71, 
SD = 23.79), resilience (range: 4-20, M = 11.93, Mdn = 12, SD = 4.46), 
life satisfaction (range: 5-35, M = 20.09, median = 20, SD = 7.42), and 
depression (range: 0-63, M = 31.45, median = 32, SD = 14.85). The 
primary outcome variable was emotional wellbeing, measured on a 
scale from 0 to 100 (M = 50.22, Mdn = 49, SD = 24.45).

The correlations established among these variables served as 
conditions for the simulation: psychological wellbeing was positively 
correlated with emotional intelligence (.50), resilience (.40), and life 
satisfaction (.60), indicating that higher levels of these factors were 
associated with improved emotional health outcomes. Conversely, 
a strong negative correlation existed between depression and 
psychological wellbeing (-.80), suggesting that higher depression 
scores were linked to lower emotional wellbeing. The variable age 
showed a slight positive correlation with emotional wellbeing (.15), 
reflecting the expectation that older individuals might experience 
greater emotional stability. Although gender and socioeconomic 
status were included as potential predictors, the simulation assumed 
no statistically significant differences in psychological wellbeing. The 
Welch’s t-test indicated no significant difference between females 
and males, t(989.88) = -0.93, p = .35. A one-way ANOVA on socioeconomic 
status also showed no significant differences in emotional wellbeing, 
F(2, 997) = 0.11, p = .90.

Additionally, the dataset included categorical transformations 
of psychological wellbeing into binary and polytomous formats: a 
binary version (low = 477, high = 523) and a polytomous version 
with four levels: low (n = 161), somewhat (n = 351), quite a bit (n 
= 330), and very much (n = 158). The polytomous transformation 
used the 25th, 50th, and 75th percentiles to define the thresholds for 
categorizing psychological wellbeing scores. These transformations 
enabled analyses using MLP models for both regression (continuous 
outcome) and classification (categorical outcomes) tasks. The data-
set can be downloaded in excel format here: Dataset (link 1).

https://doi.org/10.5281/zenodo.15133067
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Software and Platform Setup

This tutorial focuses on Python, a language that has gained 
significant popularity in the Data Science industry over the past 
decade. Python’s appeal stems from its simplicity, versatility, and 
extensive ecosystem of tools and libraries tailored for data analysis, 
visualization, and machine learning. It provides a high-level interface 
for libraries written in performance-optimized languages like C++, 
while maintaining a simple syntax. This combination allows deep 
learning frameworks such as TensorFlow to leverage Python’s user-
friendly nature while delegating computationally intensive tasks to 
optimized backends.

Given that this tutorial is designed for researchers new to ANNs, 
we have prepared a preliminaries document explaining how to ins-
tall and use the Anaconda platform and Jupyter Notebook. We will 
use Anaconda and Jupyter Notebook to run Python scripts, provi-
ding an interactive environment for writing and testing code. This 
document includes a step-by-step guide for setting up the appli-
cations and introduces basic Python programming for statistical 
modeling. It also includes a multiple regression analysis using the 
simulated matrix described earlier. The preliminaries document 
can be downloaded here: Preliminaries document (link 2).

Steps in the Application of an MLP in Regression and 
Classification Tasks

This subsection presents a step-by-step methodology for imple-
menting a MLP with the backpropagation algorithm. We provide a 
Python script for this implementation, using the simulated matrix 
subsection for regression and classification tasks. For a comprehen-
sive explanation of the MLP and backpropagation algorithm, along 
with practical tips for their application, the reader can download a 
technical document Methodology and practical tips in the applica-
tion of a multilayer perceptron, in the following link: Introduction 
to MLP (link 3).

Importing Required Libraries

At this point, it is assumed that the reader has already installed 
the Anaconda distribution and Jupyter Notebook to proceed with 
estimating an ANN model. We also assume that the reader has 
carefully reviewed the preliminaries document and has successfully 
completed a multiple regression model as a preparatory exercise. 
With that foundation in place, let’s now get started on applying ANN 
models.

The script begins by importing essential libraries. We will use 
“numpy” for numerical operations and array handling, and “pan-
das” for managing DataFrames; “tensorflow” and “Keras” will be 
employed to build and train the neural network models. “Matplot-
lib” will then be used to generate plots and visualizations. The script 
also imports “shutil” for file operations and “pathlib” for working 
with files and directories. For evaluating model performance, dif-
ferent functions and options of “scikit-learn” library provides 
various metrics and model selection tools. Finally, “keras_tuner”, 
including HyperModel and BayesianOptimization, is included for 
hyperparameter tuning (Figure 1).

Calling the Data Matrix and Selection of Variables

First, we set the random seed for reproducibility using Keras. 
Then, we import the dataset using Pandas, creating a DataFrame. 
Next, we convert categorical feature columns to the Category data 
type. We then separate the target features into dedicated varia-
bles and create the input features by dropping the target features 
from the DataFrame. This prepares the data for subsequent mode-
ling. Note that the following script includes data preprocessing to 
simultaneously analyze the three tasks for which we will use the 
ANN: regression (with the Psychological Well-being variable in 
continuous format), binary classification (with the dichotomized 
Psychological Well-being variable, and multi-class classification 
(with the Psychological Well-being variable categorized into four 

Figure 1. Importing Required Libraries.

https://doi.org/10.5281/zenodo.15130945
https://doi.org/10.5281/zenodo.15131223
https://doi.org/10.5281/zenodo.15131223
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classes). This is intended to illustrate the MLP’s ability to perform 
all three tasks in a didactic manner. Please, note that the script di-
fferentiates between the three tasks so the user can customize the 
analysis by selecting only one of them for their research purposes, 
based on the type of outcome variable they are using (Figure 2).

Creation of Training, Validation and Test Sets

A common task in machine learning research is splitting the 
dataset into training and testing subsets. Splitting data into training 
and testing sets is essential to avoid overfitting, which can lead to 
an overestimation of a model’s performance. This involves passing 
the feature matrix and target variable, defining the test set size, and 
setting a random seed for reproducible splits. This approach provides 

a more accurate measure of how well our model generalizes to new, 
unseen data (Figure 3).

Additionally, to optimize hyperparameters, we split the training 
data into final training and validation sets. The final training set 
will fit the model’s parameters, while the validation set will guide 
hyperparameter tuning. This ensures the test set remains untou-
ched, providing an unbiased evaluation of the model’s generaliza-
tion capability (Figure 4).

Data Pre-processing

Neural networks typically require input data to be preprocessed. 
This often involves encoding categorical features, since neural 
networks work best with numerical data. We use OneHotEncoder 

Figure 2. Reading Data Matrix and Selecting Output Features for Each Task.

Figure 3. Splitting Data into Training and Testing Sets.

Figure 4. Splitting Training set into Training and Validation Sets.
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from scikit-learn to perform dummy encoding, converting categorical 
columns into numerical representations. Additionally, continuous 
features are often standardized, and we use StandardScaler to achieve 
this.

Figure 6. Encoding Output features for Classification Tasks.

To streamline these preprocessing steps, we combine them 
into a single ColumnTransformer pipeline. This allows us to apply 
OneHotEncoder to categorical columns and StandardScaler to 

numerical columns within the same workflow. Crucially, the 
ColumnTransformer is fit “only” on the training data. This prevents 
data leakage, where information from the validation or test sets 
inadvertently influences the training process. After fitting, the 
preprocessor is then applied to all datasets (training, validation, and 
testing) to ensure consistent transformations (Figure 5).

We will also need to preprocess our categorical output features. 
We also preprocess categorical output features or target variables. 
For binary targets, we encode classes as 0 and 1. For multiclass tar-
gets, OneHotEncoder transforms the target variable into a one-hot 
encoded vector, representing the correct class with a 1 and others 
with 0. Fitting the OneHotEncoder to the target values ensures con-
sistent encoding across all datasets, preparing the output features 
for classification models (Figure 6).

Neural Network Model Design

We create a template class for neural network models using the 
Keras library. The class requires a “method” parameter (regression, 
binary, or multiclass classification) to specify the problem type. 
The Keras Sequential API simplifies model building with automatic 
differentiation. We define hyperparameters using the keras-tuner 
library, “tuning” “float”, “int”, or “categorical values” during the 
hyperparameter tuning process. The following script shows the 
code for the MyHyperModel class, which inherits from Keras’ 
HyperModel and defines the build method. The build method defines 
hyperparameters like the number of neurons, learning rate, activation 
function, number of hidden layers, and regularizer. The model is 
built using the Keras Sequential API using these hyperparameters. 
Depending on the “method” specified, the appropriate output layer 
and loss function are selected for regression, binary classification, 
or multiclass classification. Finally, the Adam optimizer is defined, 
and the model is compiled. Finally, example models are created for 
regression, binary classification, and multiclass classification tasks 
(Figure 7).

Figure 5. Performing Preprocessing Step on the Input Features.
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Figure 7. Creating Neural Network Models for Each Task Using MyHyperModel Class.
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Choice of Initial Weights

When a neural network starts learning, its “weights” are like 
initial guesses. Good starting guesses help it learn faster. The code 
uses a standard method for setting these initial guesses (called 
GlorotUniform), however, the MyHyperModel makes it easy to 
adjust the initial weights in the hidden layers through the kernel_
initializer. Other options can be configured, but GlorotUniform is a 
sensible default to use, and the code will optimize it with the tool 
Keras Tuner.

MLP Architecture

The code builds an MLP, which can be seen as a team working 
together. The input and output are dictated by the data, but the 
number of hidden layers and the number of neurons (team 
members) needs to be decided. The number of hidden layers and 
neurons is crucial, the “n_hidden_layers” which in this case can be 
only 1 or 2, and the “n_neurons”, which can be from 5 to 100 with 

steps of 5, as it is defined in the picture of the script. Choosing the 
right number of hidden layers is a tradeoff, this are tunable values 
for the Keras Tuner tool.

Learning Rate and Momentum Factor

The learning rate is how quickly the model updates its 
knowledge. The MyHyperModel code uses an “Adam optimizer” 
that automatically adjusts the learning rate as training progresses. 
If the “learning_rate” is too big, the model will probably never 
learn, but if it is too small, it will take very long. In our case, we let 
the Keras Tuner tool tune the “learning_rate” with values that go 
from .001 (1e-3) to 0.1 (1e-1), as we can see in the script.

Activation Function of the Hidden and Output Neurons

The activation function of the hidden neurons introduces non-
linearity, enabling the network to learn and approximate complex 

Figure 8. Performing Hyperparameter Tuning for Each Task. 
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functions. Without activation functions, the network would behave 
like a linear model, regardless of the number of layers. In our case we 
will chose between logistic, hyperbolic tangent and ReLU functions 
(see Supplementary Material for further details). 

The activation function of the output neuron will depend on the 
task being performed. In the case of regression, a linear function 
will be used while in binary and multiclass classification a sigmoid 
and softmax functions will be used respectively to interpret the 
result as a probability.

Model Definition and Compilation

To begin, the model is defined using Keras’ Sequential function. 
Layers are added one by one. The first layer is the input layer, with 
neurons matching the input features (using InputLayer). Subsequent 
layers are fully connected (Dense), with neuron count and activation 
specified by hyperparameters. The output layer’s activation and 
neuron count depend on the problem type (the method parameter): 
linear for regression, sigmoid for binary classification, softmax for 
multiclass. The Adam optimizer is used for training, and the model 
is compiled with the optimizer and appropriate loss function (mean 
squared error for regression, binary/categorical cross-entropy for 
binary/multiclass, respectively). Finally, the model is created for 
each task by specifying the method parameter.

Hyperparameter Tuning

To train the model, we tune hyperparameters for best performance. 
Instead of manually trying all combinations, we use Bayesian 

optimization, a smart search method. To avoid overfitting, we use 
the validation loss (performance on data the model has not seen) 
to measure model quality, not the training loss. We also use early 
stopping: if the validation loss stops improving, we halt training. 
We define a function that sets up this Bayesian optimization tuner, 
embeds the model within, and includes early stopping. This function 
uses training and validation data, the early stopping configuration, 
sets maximum epochs, and sets the training batch size. The function 
searches for the best hyperparameters and returns them for the 
model. The following script includes the Bayesian optimization for 
the models’ configuration and architecture (Figure 8).

When this script is executed, the MLP identifies the optimal 
parameters for each of the three models, which configure the final 
model to be trained in the next step. The parameter identification 
process generates an iterative output on the screen, concluding in 
several minutes, depending on the processor employed.

Training the Final Model

After identifying the optimal set of hyperparameters, we can 
now train our final optimized model. We define a function that 
takes a given model, its set of optimized hyperparameters, and 
both the training and validation data to perform the training. This 
function instantiates our final model using the build method on 
our hypermodel object with the optimized hyperparameters. It also 
defines an early stopping object and trains the model using the fit 
method. Finally, the function returns the trained model to the user. 
We can then train our final models by passing the appropriate set 
of hyperparameters and data to this defined function. The training 
process of the final models spends a few seconds (Figure 9).

Figure 9. Final Training Using the Best Hyperparameter Configuration.
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The following script displays the model configuration and the MLP 
architecture after training the selected model for each task (Figure 10).

According to the execution of this script, the final model found 
for the regression task using MLP featured three layers. The first and 
second hidden layers each have 15 neurons with ReLU activation. The 
output layer consists of a single neuron, typical for regression, likely 
using a linear activation function. The model includes a learning 
rate of approximately .085, and a regularization strength of .049 to 

prevent overfitting. It has a total of 391 parameters which are the 
weights and biases of each layer (Figure 11).

To check there was no overfitting during training, we plot the 
learning curves of the training process for the training and validation 
data. We define a function that takes the trained model and plots 
the loss and validation loss for each epoch on the same plot using 
the matplotlib plot function. We also pass the appropriate title as a 
parameter (Figure 12).

Figure 10. Plotting Neural Network Architecture for Each Task.

Figure 11. Regression Neural Network Architecture.

Regression Neural Network

Total Parameters: 391
regularizer: 0.048850275751119686
n_hidden_layers: 2
activation function: relu
Ir: 0.08487121176310336
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Figure 12. Plotting Loss Curve for Each Task.

These are the loss curve plots for each task: regression, binary 
classification, and multiclass classification. A loss curve for a MLP 
shows how the model’s performance changes during training, 
with loss values on the y-axis and epochs on the X axis. It typi-
cally includes training loss, which decreases as the model learns, 
and validation loss, which reflects generalization to unseen data. 
In a well-performing model, both losses decrease and converge. If 
validation loss plateaus or increases while training loss decreases, 
it may indicate overfitting. The curve helps identify learning pro-
gress, diagnose issues like underfitting or overfitting, and determi-
ne when to stop training (Figure 13).

Assessment of Model Performance

Regression Task

Once the models have been trained, we can measure their 
performance using the test dataset. Although the training data 
can be used to gain an insight into the model fitness, it is not a 
reliable source of the model’s generalisation error due to its high 
complexity and thus risk of overfitting. However, as the test dataset 
was not used before, it is essentially new data the model has not 
seen. There is not a single metric that can capture the model’s 
performance so we will compute the most used and standard 
metrics in the literature like root mean square error (RMSE), mean 
absolute error (MAE), or R2 (see Supplementary Material for further 
details).

To extract the predictions of the model from a given dataset, 
we define a function that perform the calculation of the regression 
metrics. We will compute the predictions of the model using 
the predict method on the model object and pass the data as a 
parameter. The results can then be presented in a table format by 
creating a pandas DataFrame with all the results. In our case, we 
compare the performance on the training, validation and testing 
data (Figure 14).
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Figure 13. Regression Loss Curve, Binary Classification Loss Curve and 
Multiclass Loss Curve.

Once the script is executed, the MLP model’s performance is best 
on the training data, with the lowest RMSE (11.17) and MAE (8.86), 
and the highest R2 (.78). This is expected as the model is optimized 
on this dataset. Performance on the validation and test sets is slightly 
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worse but relatively consistent. The validation set shows RMSE of 
13.66, MAE of 11.22, and R2 of .64. The test set results are similar with 
RMSE of 13.27, MAE of 10.56, and R2 of .71. The consistency between 
validation and test results suggests good generalization. The R2 values 
indicate moderate to good predictive power, explaining 64-71% of 
the variance in the validation and test sets. The similar performance 
across datasets suggests the model is not overfitting significantly to 
the training data (Table 1).

Figure 14. Computing Regression Performance Metrics for Training, Validation 
and Test Datasets.

Table 1. Regression Performance Metrics.

RMSE MAE R2

Train 11.171141 8.862527 .778711
Validation 13.661510 11.218480 .639704
Test 13.267562 10.562508 .710594

An important limitation of neural networks and other black box 
model compared to more classical linear models is their lack of 
interpretability. Over the last decade however, there has been an 
important line of research trying to tackle this limitation. A very 
common method to gain insights into the models’ inner workings is 
permutation importance of the features (input variables) which allows 
to gain a measure on the importance of a giving variable (or feature) 
in the models’ overall performance (see Supplementary Material for 
further details).

We use sklearn implementation of the technique which requires 
the model itself as well as the data used for evaluation, which will 
normally be the testing data, and the metric used for measuring the 
models’ performance, which will usually be the RMSE for a regression 
problem. To pass the sklearn metric to the function we will have to 
first transform it to a scorer using the make_scorer function from the 
sklearn library. To present the results, we define a function which 
takes the output of the sklearn implementation and returns a plot 
showing the mean importance for each feature as well as the standard 
deviation. The function integrates into the graphical representation the 
quantitative values of computed variable importance, accompanied by 
their respective confidence intervals. The next script allows to create 
function (Figure 15).

The permutation method for the regression task can be implemented 
using the following script using the function “permutation_importance”. 
When using permutation feature importance with RMSE as the scoring 
metric (and greater_is_better = False), the importance of each variable is 

Figure 15. Permutation Feature Importance Plotting Function.
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expressed as the “increase in RMSE” caused by permuting that feature. 
Higher values indicate greater importance (Figura 16).

Figure 16. Plotting the Permutation Feature Importance for Regression Task.
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Figure 17. Feature Importance Regression.

If you run the script, this is the plot of feature importance of 
the MLP for the task regression using the permutation procedure. 
The order of importance exactly reflects the simulated existing 
relationships in the dataset: Depression (-.80), Life satisfaction (.60), 
Emotional intelligence (.50), and resilience (.40). The importance of 
age (initially .15) is non-significant (.04 ± .05) and also socioeconomic 
status (Figure 17).

The MLP model’s solution thus accurately captures the simulated 
relationships between the predictor variables and the response 
variable, effectively representing the underlying data structure.

Classification Task

For binary and multiclass classification tasks, predictions are 
obtained using the MLP model’s predict method. However, many 
classification metrics require discrete class labels rather than 
probabilities. In binary classification, a threshold (typically .50) is 
applied to determine class membership. To convert probabilities 
into class predictions, we can utilize the ‘where’ function from the 
“numpy” library. This function allows us to efficiently transform 
the continuous probability outputs into discrete class labels based 
on the chosen threshold.

Model performance is evaluated using various metrics from 
the Sklearn library, comparing target and predicted classes. We 
focus on specificity, sensitivity, F1-score, AUC, and Cohen’s kappa 
score (see Supplementary Material for further details). A custom 
function will compute these metrics for training, validation, 
and testing datasets, with results presented in a DataFrame. 
The following script computes those metrics of the MLP binary 
classification task (Figure 18).

The MLP model exhibits robust performance in the binary 
classification task, as demonstrated by the metrics. Results for test 
set, which provide the most reliable assessment of the model’s ability 
to generalize to unseen data, reveal a specificity of .878, indicating a 

Figure 18. Computing Binary Classification Performance Metrics.
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strong capacity to correctly identify negative instances. The sensitivity 
of .784 reflects a good ability to identify positive instances. The F1-
score of .825 suggests a balanced performance between precision 
and recall. The Cohen’s kappa score of .661 signifies a moderate 
agreement between predicted and actual classes, exceeding what 
would be expected by chance alone. Critically, the high AUC of .926 
on the test data confirms the model’s excellent ability to discriminate 
between the two classes (Table 2).

Table 2. Binary Classification Performance Metrics.

Specificity Sensitivity F1 Kappa Score ROC AUC

Train .860947 .847682 .846281 .708504 .929131
Validation .781609 .808219 .781457 .586596 .879389
Test .877551 .784314 .824742 .660543 .925970

In classification tasks, results are often visualized using confusion 
matrices and ROC curves. Sklearn’s ConfusionMatrixDisplay and 

RocCurveDisplay facilitate this. We create a normalized confusion 
matrix using the “confusion_matrix” function, passing target 
and predicted classes as parameters. The resulting matrix is then 
visualized using ConfusionMatrixDisplay, with class labels from the 
OneHotEncoder. The plot method displays confusion matrices for 
training, validation, and testing data. Similarly, ROC curves can be 
plotted using RocCurveDisplay for each dataset. This is the script for 
obtaining the confusion matrices (Figure 19 and 20).

The MLP model’s confusion matrix on the testing data reveals good 
performance in classifying “High” psychological well-being (88% ac-
curacy) but a tendency to misclassify “low” psychological well-being 
as “high” (22% error rate). While “high” classification is strong, “low” 
classification accuracy is lower (78%), and misclassification as “high” 
is more frequent than the reverse. This suggests a bias toward the 
“high” class, warranting potential model adjustments. The slightly 
worse results in the MLP binary classification task, compared to the 
regression task predicting psychological well-being as a continuous 
variable, stem primarily from the nature of the outcome variable 

Figure 19. Plotting Binary Classification Confusion Matrix. 
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rather than a deficiency in the MLP model itself. Dichotomizing the 
continuous well-being variable into “high” and “low” categories inhe-
rently discards nuanced information about the degree of well-being, 
which was available in the regression task. This loss of information 
makes the classification problem intrinsically more challenging, as 
the model must now discriminate between broad categories lacking 
the fine-grained distinctions present in the original continuous scale. 
Consequently, the observed difference in performance is largely attri-
butable to the simplification of the outcome variable and the resul-
tant loss of information, rather than an inherent limitation of the MLP 
architecture. The nature of the classification is such that it is harder 
than regression, even when the same model is used.

To display the ROC curve, we first create the figure and axis of 
the plot using the subplots function from matplotlib library. We can 
then pass the target class as well as the probabilities belonging to 
each class to the “from_predictions” method of the RocCurveDisplay 
object as well as specify the axis on which the curve will be plotted. 
Finally, we can also set the colour and the label of each curve as well 
as set the axis labels and the title of the plot as follows (Figure 21).

Figure 21. Plotting Binary Classification ROC Curves.

The MLP model achieves excellent discrimination between 
classes, as evidenced by the high AUC scores. The training and test 
datasets both reach an AUC of .93, indicating strong performance and 
generalization. The validation dataset, with a slightly lower AUC of 
.88, still demonstrates good discrimination ability. All AUC values are 
significantly above the chance level (.05), highlighting the model’s 
effectiveness (Figure 22).
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Figure 22. Binary Classification ROC Curves.

Finally, to measure the importance of each input variable we 
make use of the “permutation_importance” function again. However, 
we now use the AUC as the figure of merit to measure the model’s 
performance. To pass the Sklearn metric to the function we have to 
first transform it to a scorer using the “make_scorer” function from 
the Sklearn library (Figure 23).

Figure 23. Plotting Permutation Feature Importance for Binary Classification.

In this case, the Feature Importance values represent the decrease 
in AUC score when each feature is shuffled. Higher values indicate 
greater importance for class discrimination. Depression emerges as 
the most influential variable (.28 ± .04), while other features appear 
non-significant. The importance ranking largely aligns with the MLP 
regression task results, barring the non-significant influences (Figure 
24).

For the multiclass classification task, we adapt our approach to 
handle four classes instead of two. We use the “argmax” function 
from numpy to select the class with the highest predicted probability, 
then convert these indices to one-hot encoded values using keras’s 
“to_categorical” function. Unlike the binary case, many metrics don’t 
directly support multiclass values. We address this using a one-
versus-rest approach, computing metrics for each class separately 
by treating it as positive and the others as negative. This process is 
implemented in a for loop, with results stored in pre-defined lists. 
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The final results are presented in a pandas DataFrame, similar to the 
binary classification task, but now encompassing metrics for all four 
classes (Figure 25).
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Figure 24. Feature Importance Binary Classification.

The MLP model’s test set performance reveals varying success 
across the four psychological well-being categories. The “low” and 

“very much” categories demonstrate superior discrimination, as 
evidenced by their high specificities (.969 and .930, respectively) 
and AUCs (.934 and .933). This likely stems from these categories 
representing the extreme ends of the underlying continuous 
psychological well-being scale, leading to clearer differentiation 
based on the input features. The somewhat and quite a bit categories, 
conversely, exhibit lower specificities (around 0.800) and AUCs 
(around .815), suggesting slightly poorer classification. The F1 and 
Kappa values confirm this mixed pattern. The poorer performance 
in the intermediate categories may be attributable to the artificial 
“fuzziness” introduced by the polytomization process of the 
continuous output variable in the simulated dataset, where these 
categories capture a more heterogeneous group of individuals, 
making them inherently more difficult to classify than the more 
distinct extreme categories (Table 3).

The process for generating the confusion matrix in the 
multiclass task closely mirrors that of the binary case. We use 
the same “confusion_matrix” function with normalized output 
and pass the resulting object to ConfusionMatrixDisplay. The key 
difference lies in the inclusion of all four category names, retrieved 
from the OneHotEncoder used in preprocessing, instead of just two. 
The plot method is then called to visualize the matrix, providing 
a comprehensive view of the model’s performance across all four 
classes (Figure 26).

Figure 25. Computing Multiclass Classification Performance Metrics.

Table 3. Multiclass Classification Performance Metrics.

Specificity Sensitivity F1 AUC ROC Kappa Score

Low .969136 .631579 .716418 .933886 .660593
Somewhat .801527 .666667 .652482 .816905 .463425
Quite a bit .800000 .615385 .606061 .812536 .412097
Very much .930233 .714286 .666667 .932724 .608150
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Figure 26. Plotting Confusion Matrix for Multiclass Classification.
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Figure 27. Multiclass Classification Confusion Matrix.

Figure 28. Plotting ROC Curves for Multiclass Classification.

For conciseness, we only compute and present the confusion 
matrix for the test set, providing a focused evaluation of the model’s 

generalization performance. The MLP model achieves 71% accuracy 
in classifying “Very much”, and around 63-67% for the remaining 
classes. The primary challenge lies in differentiating adjacent 
categories. Notably, 34% of actual low instances are misclassified 
as somewhat; somewhat instances have a 26% chance of being 
misclassified as quite a bit, while 20% of quite a bit instances are 
misclassified as somewhat, and 18% of quite a bit instances are 
misclassified as very much. This indicates confusion between 
neighboring levels of psychological well-being, and a lower 
sensitivity when discriminating quite a bit instances (Figure 27).

To create the ROC curve plot we need to use the one-versus-rest 
approach again and compute a ROC curve for each class separately. 
Therefore, when computing the ROC curve for the i’th class, we need 
to pass the i’th index of both the target outcome and the predicted 
probabilities to the RocCurveDisplay function. As this has to be 
repeated for each class, we will run the code inside a for loop and 
attach a different colour for each curve (Figure 28).
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Figure 29. Multiclass Classification ROC Curve.

The model achieves its highest discrimination for the low and very 
much classes, both with an AUC of .93, while the somewhat and quite 
a bit classes have AUC values of .82 and .81, respectively (Figure 29).

Finally, for the permutation feature importance we use the AUC 
as figure of merit and use the one-versus-rest approach. Thus, we 
will have four feature importance plots, one for each class. We set 
the average parameter to none and the “multi_class” parameter to 
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‘ovr’ inside the “make_scorer” function to compute the AUC for each 
class. We then extract the importance mean and importance standard 
deviation for each class from the results by accessing the i’th index 
for the i’th class. The results can then be plotted separately as the 
following script includes. Again, for conciseness, we only display the 
ROC curves for the test set (Figure 30).

The importance plot based on the permutation method reveals a 
similar structure across all four classes. Depression emerges as the 
most important variable in every case, with values ranging from 
.22 (quite a bit) to .26 (very much). The solutions also converge on 

the second most important variable, Life Satisfaction, which ranges 
from .02 to .06. The remaining input variables exhibit virtually ne-
gligible importance (Figure 31).

Conclusions

In this tutorial, we have shown the flexibility of a MLP by applying 
the same general Python script, adapted to different predictive tasks: 
regression, binary classification, and multiclass classification. By 

Figure 30. Plotting Permutation Feature Importance for Each Class.

Figure 31. Feature Importance Plots for Multiclass Classification.
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using “psychological well-being” consistently across tasks, first as 
a continuous variable for regression, then dichotomized for binary 
classification, and finally polytomized for multiclass classification, 
we ensured direct comparability of the results. For each task, we 
computed the appropriate evaluation metrics and visualized the 
outcomes through relevant plots, providing a comprehensive view of 
the model’s performance in different predictive scenarios.

Beyond showcasing the applications of MLP, our goal was to 
illustrate the implementation and interpretation of these models in 
an accessible way. By systematically presenting the Python scripts and 
the corresponding analyses, we aimed to demystify the use of ANNs 
in Behavioral and Health Sciences research. The complete script with 
the three tasks and a separate one for each task can be downloaded 
in the following links: all tasks compiled (link 4), regression task (link 
5), binary classification task (link 6), and multiclass classification task 
(link 7).

Our learning objective and optimal strategy is to enable 
readers to execute all analyses, verify results, and alleviate anxiety 
potentially associated with the use of programming languages in 
statistical modeling. We assure the reader that the experience is 
highly rewarding, particularly for researchers who, in general, 
are not familiar with the models at the core of AI, nor specifically 
work regularly with platforms that operate using programming 
languages. For this reason, we hope this work serves as a practical 
guide for researchers unfamiliar with these AI models, encouraging 
them to incorporate MLPs into their methodological toolkit and 
expanding the range of analytical approaches available for their 
studies.

Available Material

Dataset, supplementary material and Python scripts can be found 
at the following links:

- 	 Dataset: https://doi.org/10.5281/zenodo.15133067
-	 Preliminaries document: https://doi.org/10.5281/

zenodo.15130945
- 	 Methodology and practical tips in the application of a multilayer 

perceptron: https://doi.org/10.5281/zenodo.15131223
- 	 Scripts:
- 	 All tasks compiled: https://doi.org/10.5281/zenodo.15133162
- 	 Regression task: https://doi.org/10.5281/zenodo.15133218 
-	 Binary classification task: https://doi.org/10.5281/

zenodo.15133256 
- 	 Multiclass classification task: https://doi.org/10.5281/

zenodo.15133279 

Highlights

- Simplifying Complex Concepts: This tutorial helps to demystify 
ANNs by breaking down the backpropagation algorithm into 
manageable steps. Readers will gain hands-on experience in Python, 
empowering them to confidently replicate analyses for regression 
and classification tasks without feeling overwhelmed.

- Building Confidence in Application: Designed for behavioral 
scientists, and even for other disciplines, this tutorial bridges theory 
and practice, alleviating anxiety around complex models. Learn 
to interpret results clearly and effectively, fostering a supportive 
environment for innovative applications of ANNs in research and 
beyond.
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