
Artificial Neural Networks (ANNs) have emerged as the
cornerstone of modern Artificial Intelligence (AI), revolutionizing the
field and enabling unprecedented advancements in machine learning
and cognitive computing. These computational models, inspired
by the biological neural networks found in animal brains, form the
foundation upon which many of today’s most sophisticated AI systems
are built. By mimicking the interconnected structure of neurons
and synapses, ANNs have demonstrated remarkable capabilities in
pattern recognition, decision-making, and complex problem-solving

across a wide array of domains. As the driving force behind deep
learning algorithms, ANNs have become instrumental in pushing the
boundaries of AI, from natural language processing and computer
vision to autonomous systems and predictive analytics.

The impact of ANNs and AI extends far beyond traditional computer
Science applications, finding increasing relevance in the realm of
behavioral Sciences. As researchers seek to unravel the complexities
of human behavior, cognition, and social interactions, these advanced
computational tools offer new avenues for analysis and prediction.

Funding: This study has been supported through the funded recruitment project 2023-24_8_61 RI-24, thanks to the Recovery and Resilience Mechanism Funds (EU - Next Gene-
ration) involving the European Union, the Ministry of Labour and Social Economy (Spain), the Autonomous Government of the Balearic Islands and the University of the Balearic
Islands. Correspondence: juanjo.montano@uib.es (J. J. Montaño Moreno).

Cite this article as: Martínez-García, J., Montaño, J. J., Jiménez, R., Gervilla, E., Cajal, B., Núñez, A., Leguizamo, F., & Sesé, A. (2025). Decoding artificial intelligence: A tutorial on neural
networks in behavioral research. Clinical and Health, 36(2), 77-95. https://doi.org/10.5093/clh2025a13

ISSN:1130-5274/© 2025 Colegio Oficial de la Psicología de Madrid. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Clinical and Health
https: / / journa ls.copmadr id.org/c lysa

Decoding Artificial Intelligence: A Tutorial on Neural Networks in
Behavioral Research

Javier Martínez-García2, Juan José Montaño1,2, Rafael Jiménez1,2, Elena Gervilla1,2, Berta Cajal1,2, Antonio Núñez1,2,
Federico Leguizamo1,2, and Albert Sesé1,2

1University of the Balearic Islands, Palma, Balearic Islands, Spain
2PSICOMEST Research Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain

A R T I C L E I N F O

Article history:
Received 21 February 2025
Accepted 31 March 2025
Available online 18 June 2025

Keywords:
Artificial intelligence
Artificial neural networks
Multilayer perceptron
Backpropagation algorithm
Python
Behavioral and health sciences

A B S T R A C T

Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are
increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on
implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial
guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with
psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and
polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with
backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range:
.81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health
Sciences and other fields, bridging the gap between theory and practical implementation.

Decodificando la inteligencia artificial: Un tutorial sobre redes neuronales en las
Ciencias del Comportamiento

R E S U M E N

Introducción: Las Redes Neuronales Artificiales (RNA), especialmente los perceptrones multicapa (MLPs) con retropropagación,
son cada vez más utilizadas en Ciencias del Comportamiento y de la Salud para analizar datos. Este artículo presenta un
tutorial completo sobre la implementación de modelos MLP con retropropagación para tareas de regresión y clasificación
usando Python. Método: El tutorial guía paso a paso la construcción de un MLP con retropropagación utilizando una matriz de
datos simulados (N = 1,000) con variables psicológicas, demostrando la versatilidad de las RNA en la predicción de variables
continuas y clasificación de (binarios y politómicos). Se incluyen scripts de Python y su interpretación detallada. Resultados: Los
modelos MLP muestran eficacia en regresión (R² = 0.71) y clasificación (AUC binaria = .93, rango AUC politómica: .81-.93) en los
tests. Conclusiones: Este tutorial persigue desmitificar las RNA y promover su uso en Ciencias del Comportamiento y la Salud,
facilitando la transición de la teoría a la práctica.

Palabras clave:
Inteligencia artificial
Redes neuronales artificiales
Perceptrón multicapa
Algoritmo de retropropagación
Python
Ciencias del comportamiento y
de la salud

Clinical and Health (2025) 36(2) 77-95

78 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

Moreover, recent studies have shown that machine learning
algorithms can effectively analyze complex behavioral data to
uncover intricate patterns related to psychological well-being
and decision-making processes, demonstrating the power of AI in
identifying and understanding multifaceted psychological issues
(Vezzoli & Zogmaister, 2023). The ability of ANNs to process high-
dimensional data allows researchers to explore complex relationships
among various psychological constructs, thereby addressing
limitations inherent in traditional statistical methods. This capability
is particularly significant in understanding mental health issues
where interactions among biological, emotional, cognitive, and
environmental factors are critical.

Thus, ANNs are being of great use in modeling and understanding
cognitive processes such as the learning of abstract concepts (Piloto
et al., 2022; Roads & Mozer, 2021), the production and understanding
of natural language (Arana et al., 2024), the detection of emotional
patterns from facial recognition (Faltyn et al., 2023; Song, 2021; Wei
et al., 2021) or from written language (Qamar et al., 2021).

In the field of clinical psychology, these techniques have been used
in the detection of internet users with suicidal intentions (Schoene
et al., 2023), the prediction of maladaptive behaviors (low academic
performance, drug use, delinquency, etc.) (McKee et al., 2022) or in
the identification of the optimal psychological treatment according
to the patient’s characteristics (Hollon et al., 2019).

Developmental and educational psychology has also benefited
from the use of ANNs in the detection of autism through language
(Wawer & Chojnicka, 2022), in the prediction of emotional and
behavioral risk status in children (Wang et al., 2021) or in identifying
student satisfaction with different learning modalities (Ho et al.,
2021).

Finally, the application of ANNs in the field of social psychology
has focused in the detection of consumer needs and behavior towards
product features (Barnes, 2022; Li et al., 2024), predicting the use of
social networks (Ramírez et al., 2021) or in identifying the effects of
social comparison among social network users (Jabło ska & Zajdel,
2020).

As can be observed, the application of AI methodologies in
Behavioral, Social, and Health Sciences is rapidly expanding,
with potential uses ranging from diagnosis and prediction to
understanding human development and functioning (Hassani et
al., 2020). By harnessing the strengths of ANNs, researchers can
gain deeper insights into human behavior and cognition, paving
the way for innovative approaches to psychological assessment and
intervention.

The Multilayer Perceptron (MLP) and the Backpropagation
Learning Algorithm: The Most Prevalent ANN

There are currently many ANN models that are used in various
fields of application in data analysis. Among these models, one of the
most widely used is the multilayer perceptron (MLP) associated with
the backpropagation error learning algorithm (Henninger et al., 2023),
also called backpropagation network (Rumelhart et al., 1986). The
main virtue of a MLP network that explains its widespread use in the
field of data analysis is that it is a universal function approximator. The
mathematical basis for this statement is due to Kolmogorov (1957),
who found that a continuous function of different variables can be
represented by the concatenation of several continuous functions of
the same variable. This means that a perceptron containing at least
one hidden layer with enough non-linear units could learn virtually
any kind of relation if it can be approximated in terms of a continuous
function (Hornik et. al., 1989).

The backpropagation algorithm or one of its variants forms the
basis of today’s deep learning in ANN models such as Long Short
Term Memory (LSTM) (backpropagation through time) (Hochreiter

& Schmidhuber, 1997), Convolutional Neural Networks (CNN)
(LeCun et al., 1998), Deep Belief Networks (DBN) (Hinton et al.,
2006), or Generative Adversarial Networks (GAN) (Goodfellow et
al, 2014).

Objectives of the Tutorial

The aim of this paper is to provide a tutorial for introducing
researchers in the Behavioral and Health Sciences to the use
of ANNs. This tutorial focuses on both regression (continuous
outcomes) and classificatory (categorical outcomes: binary and
polytomous) ANNs applications. To accomplish this goal, we
present a step-by-step methodology for applying MLP with the
backpropagation algorithm. We also provide a Python script that
enables its implementation, utilizing the data described in the
Dataset Generation subsection for regression and classification
tasks. The script is designed for easy adaptation to any dataset
involving regression or classification problems. Our aim is to make
this resource valuable for researchers across various disciplines,
enabling them to readily incorporate ANNs into their respective
fields of study.

Dataset Generation

A simulated dataset was created to embrace the relationships
among psychological and demographic variables that influence
psychological wellbeing, the primary outcome variable, in a sample
of 1,000 individuals. The predictor variables consisted of gender
(50.7% female), age (ranging from 18 to 85 years, mean = 51.63, Mdn
= 52, SD = 17.11), and socioeconomic status, categorized as low (n =
343), medium (n = 347), and high (n = 310). Additional predictors
included emotional intelligence (range: 24-120, M = 71.97, Mdn = 71,
SD = 23.79), resilience (range: 4-20, M = 11.93, Mdn = 12, SD = 4.46),
life satisfaction (range: 5-35, M = 20.09, median = 20, SD = 7.42), and
depression (range: 0-63, M = 31.45, median = 32, SD = 14.85). The
primary outcome variable was emotional wellbeing, measured on a
scale from 0 to 100 (M = 50.22, Mdn = 49, SD = 24.45).

The correlations established among these variables served as
conditions for the simulation: psychological wellbeing was positively
correlated with emotional intelligence (.50), resilience (.40), and life
satisfaction (.60), indicating that higher levels of these factors were
associated with improved emotional health outcomes. Conversely,
a strong negative correlation existed between depression and
psychological wellbeing (-.80), suggesting that higher depression
scores were linked to lower emotional wellbeing. The variable age
showed a slight positive correlation with emotional wellbeing (.15),
reflecting the expectation that older individuals might experience
greater emotional stability. Although gender and socioeconomic
status were included as potential predictors, the simulation assumed
no statistically significant differences in psychological wellbeing. The
Welch’s t-test indicated no significant difference between females
and males, t(989.88) = -0.93, p = .35. A one-way ANOVA on socioeconomic
status also showed no significant differences in emotional wellbeing,
F(2, 997) = 0.11, p = .90.

Additionally, the dataset included categorical transformations
of psychological wellbeing into binary and polytomous formats: a
binary version (low = 477, high = 523) and a polytomous version
with four levels: low (n = 161), somewhat (n = 351), quite a bit (n
= 330), and very much (n = 158). The polytomous transformation
used the 25th, 50th, and 75th percentiles to define the thresholds for
categorizing psychological wellbeing scores. These transformations
enabled analyses using MLP models for both regression (continuous
outcome) and classification (categorical outcomes) tasks. The data-
set can be downloaded in excel format here: Dataset (link 1).

https://doi.org/10.5281/zenodo.15133067

79Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

Software and Platform Setup

This tutorial focuses on Python, a language that has gained
significant popularity in the Data Science industry over the past
decade. Python’s appeal stems from its simplicity, versatility, and
extensive ecosystem of tools and libraries tailored for data analysis,
visualization, and machine learning. It provides a high-level interface
for libraries written in performance-optimized languages like C++,
while maintaining a simple syntax. This combination allows deep
learning frameworks such as TensorFlow to leverage Python’s user-
friendly nature while delegating computationally intensive tasks to
optimized backends.

Given that this tutorial is designed for researchers new to ANNs,
we have prepared a preliminaries document explaining how to ins-
tall and use the Anaconda platform and Jupyter Notebook. We will
use Anaconda and Jupyter Notebook to run Python scripts, provi-
ding an interactive environment for writing and testing code. This
document includes a step-by-step guide for setting up the appli-
cations and introduces basic Python programming for statistical
modeling. It also includes a multiple regression analysis using the
simulated matrix described earlier. The preliminaries document
can be downloaded here: Preliminaries document (link 2).

Steps in the Application of an MLP in Regression and
Classification Tasks

This subsection presents a step-by-step methodology for imple-
menting a MLP with the backpropagation algorithm. We provide a
Python script for this implementation, using the simulated matrix
subsection for regression and classification tasks. For a comprehen-
sive explanation of the MLP and backpropagation algorithm, along
with practical tips for their application, the reader can download a
technical document Methodology and practical tips in the applica-
tion of a multilayer perceptron, in the following link: Introduction
to MLP (link 3).

Importing Required Libraries

At this point, it is assumed that the reader has already installed
the Anaconda distribution and Jupyter Notebook to proceed with
estimating an ANN model. We also assume that the reader has
carefully reviewed the preliminaries document and has successfully
completed a multiple regression model as a preparatory exercise.
With that foundation in place, let’s now get started on applying ANN
models.

The script begins by importing essential libraries. We will use
“numpy” for numerical operations and array handling, and “pan-
das” for managing DataFrames; “tensorflow” and “Keras” will be
employed to build and train the neural network models. “Matplot-
lib” will then be used to generate plots and visualizations. The script
also imports “shutil” for file operations and “pathlib” for working
with files and directories. For evaluating model performance, dif-
ferent functions and options of “scikit-learn” library provides
various metrics and model selection tools. Finally, “keras_tuner”,
including HyperModel and BayesianOptimization, is included for
hyperparameter tuning (Figure 1).

Calling the Data Matrix and Selection of Variables

First, we set the random seed for reproducibility using Keras.
Then, we import the dataset using Pandas, creating a DataFrame.
Next, we convert categorical feature columns to the Category data
type. We then separate the target features into dedicated varia-
bles and create the input features by dropping the target features
from the DataFrame. This prepares the data for subsequent mode-
ling. Note that the following script includes data preprocessing to
simultaneously analyze the three tasks for which we will use the
ANN: regression (with the Psychological Well-being variable in
continuous format), binary classification (with the dichotomized
Psychological Well-being variable, and multi-class classification
(with the Psychological Well-being variable categorized into four

Figure 1. Importing Required Libraries.

https://doi.org/10.5281/zenodo.15130945
https://doi.org/10.5281/zenodo.15131223
https://doi.org/10.5281/zenodo.15131223

80 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

classes). This is intended to illustrate the MLP’s ability to perform
all three tasks in a didactic manner. Please, note that the script di-
fferentiates between the three tasks so the user can customize the
analysis by selecting only one of them for their research purposes,
based on the type of outcome variable they are using (Figure 2).

Creation of Training, Validation and Test Sets

A common task in machine learning research is splitting the
dataset into training and testing subsets. Splitting data into training
and testing sets is essential to avoid overfitting, which can lead to
an overestimation of a model’s performance. This involves passing
the feature matrix and target variable, defining the test set size, and
setting a random seed for reproducible splits. This approach provides

a more accurate measure of how well our model generalizes to new,
unseen data (Figure 3).

Additionally, to optimize hyperparameters, we split the training
data into final training and validation sets. The final training set
will fit the model’s parameters, while the validation set will guide
hyperparameter tuning. This ensures the test set remains untou-
ched, providing an unbiased evaluation of the model’s generaliza-
tion capability (Figure 4).

Data Pre-processing

Neural networks typically require input data to be preprocessed.
This often involves encoding categorical features, since neural
networks work best with numerical data. We use OneHotEncoder

Figure 2. Reading Data Matrix and Selecting Output Features for Each Task.

Figure 3. Splitting Data into Training and Testing Sets.

Figure 4. Splitting Training set into Training and Validation Sets.

81Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

from scikit-learn to perform dummy encoding, converting categorical
columns into numerical representations. Additionally, continuous
features are often standardized, and we use StandardScaler to achieve
this.

Figure 6. Encoding Output features for Classification Tasks.

To streamline these preprocessing steps, we combine them
into a single ColumnTransformer pipeline. This allows us to apply
OneHotEncoder to categorical columns and StandardScaler to

numerical columns within the same workflow. Crucially, the
ColumnTransformer is fit “only” on the training data. This prevents
data leakage, where information from the validation or test sets
inadvertently influences the training process. After fitting, the
preprocessor is then applied to all datasets (training, validation, and
testing) to ensure consistent transformations (Figure 5).

We will also need to preprocess our categorical output features.
We also preprocess categorical output features or target variables.
For binary targets, we encode classes as 0 and 1. For multiclass tar-
gets, OneHotEncoder transforms the target variable into a one-hot
encoded vector, representing the correct class with a 1 and others
with 0. Fitting the OneHotEncoder to the target values ensures con-
sistent encoding across all datasets, preparing the output features
for classification models (Figure 6).

Neural Network Model Design

We create a template class for neural network models using the
Keras library. The class requires a “method” parameter (regression,
binary, or multiclass classification) to specify the problem type.
The Keras Sequential API simplifies model building with automatic
differentiation. We define hyperparameters using the keras-tuner
library, “tuning” “float”, “int”, or “categorical values” during the
hyperparameter tuning process. The following script shows the
code for the MyHyperModel class, which inherits from Keras’
HyperModel and defines the build method. The build method defines
hyperparameters like the number of neurons, learning rate, activation
function, number of hidden layers, and regularizer. The model is
built using the Keras Sequential API using these hyperparameters.
Depending on the “method” specified, the appropriate output layer
and loss function are selected for regression, binary classification,
or multiclass classification. Finally, the Adam optimizer is defined,
and the model is compiled. Finally, example models are created for
regression, binary classification, and multiclass classification tasks
(Figure 7).

Figure 5. Performing Preprocessing Step on the Input Features.

82 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

Figure 7. Creating Neural Network Models for Each Task Using MyHyperModel Class.

83Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

Choice of Initial Weights

When a neural network starts learning, its “weights” are like
initial guesses. Good starting guesses help it learn faster. The code
uses a standard method for setting these initial guesses (called
GlorotUniform), however, the MyHyperModel makes it easy to
adjust the initial weights in the hidden layers through the kernel_
initializer. Other options can be configured, but GlorotUniform is a
sensible default to use, and the code will optimize it with the tool
Keras Tuner.

MLP Architecture

The code builds an MLP, which can be seen as a team working
together. The input and output are dictated by the data, but the
number of hidden layers and the number of neurons (team
members) needs to be decided. The number of hidden layers and
neurons is crucial, the “n_hidden_layers” which in this case can be
only 1 or 2, and the “n_neurons”, which can be from 5 to 100 with

steps of 5, as it is defined in the picture of the script. Choosing the
right number of hidden layers is a tradeoff, this are tunable values
for the Keras Tuner tool.

Learning Rate and Momentum Factor

The learning rate is how quickly the model updates its
knowledge. The MyHyperModel code uses an “Adam optimizer”
that automatically adjusts the learning rate as training progresses.
If the “learning_rate” is too big, the model will probably never
learn, but if it is too small, it will take very long. In our case, we let
the Keras Tuner tool tune the “learning_rate” with values that go
from .001 (1e-3) to 0.1 (1e-1), as we can see in the script.

Activation Function of the Hidden and Output Neurons

The activation function of the hidden neurons introduces non-
linearity, enabling the network to learn and approximate complex

Figure 8. Performing Hyperparameter Tuning for Each Task.

84 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

functions. Without activation functions, the network would behave
like a linear model, regardless of the number of layers. In our case we
will chose between logistic, hyperbolic tangent and ReLU functions
(see Supplementary Material for further details).

The activation function of the output neuron will depend on the
task being performed. In the case of regression, a linear function
will be used while in binary and multiclass classification a sigmoid
and softmax functions will be used respectively to interpret the
result as a probability.

Model Definition and Compilation

To begin, the model is defined using Keras’ Sequential function.
Layers are added one by one. The first layer is the input layer, with
neurons matching the input features (using InputLayer). Subsequent
layers are fully connected (Dense), with neuron count and activation
specified by hyperparameters. The output layer’s activation and
neuron count depend on the problem type (the method parameter):
linear for regression, sigmoid for binary classification, softmax for
multiclass. The Adam optimizer is used for training, and the model
is compiled with the optimizer and appropriate loss function (mean
squared error for regression, binary/categorical cross-entropy for
binary/multiclass, respectively). Finally, the model is created for
each task by specifying the method parameter.

Hyperparameter Tuning

To train the model, we tune hyperparameters for best performance.
Instead of manually trying all combinations, we use Bayesian

optimization, a smart search method. To avoid overfitting, we use
the validation loss (performance on data the model has not seen)
to measure model quality, not the training loss. We also use early
stopping: if the validation loss stops improving, we halt training.
We define a function that sets up this Bayesian optimization tuner,
embeds the model within, and includes early stopping. This function
uses training and validation data, the early stopping configuration,
sets maximum epochs, and sets the training batch size. The function
searches for the best hyperparameters and returns them for the
model. The following script includes the Bayesian optimization for
the models’ configuration and architecture (Figure 8).

When this script is executed, the MLP identifies the optimal
parameters for each of the three models, which configure the final
model to be trained in the next step. The parameter identification
process generates an iterative output on the screen, concluding in
several minutes, depending on the processor employed.

Training the Final Model

After identifying the optimal set of hyperparameters, we can
now train our final optimized model. We define a function that
takes a given model, its set of optimized hyperparameters, and
both the training and validation data to perform the training. This
function instantiates our final model using the build method on
our hypermodel object with the optimized hyperparameters. It also
defines an early stopping object and trains the model using the fit
method. Finally, the function returns the trained model to the user.
We can then train our final models by passing the appropriate set
of hyperparameters and data to this defined function. The training
process of the final models spends a few seconds (Figure 9).

Figure 9. Final Training Using the Best Hyperparameter Configuration.

85Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

The following script displays the model configuration and the MLP
architecture after training the selected model for each task (Figure 10).

According to the execution of this script, the final model found
for the regression task using MLP featured three layers. The first and
second hidden layers each have 15 neurons with ReLU activation. The
output layer consists of a single neuron, typical for regression, likely
using a linear activation function. The model includes a learning
rate of approximately .085, and a regularization strength of .049 to

prevent overfitting. It has a total of 391 parameters which are the
weights and biases of each layer (Figure 11).

To check there was no overfitting during training, we plot the
learning curves of the training process for the training and validation
data. We define a function that takes the trained model and plots
the loss and validation loss for each epoch on the same plot using
the matplotlib plot function. We also pass the appropriate title as a
parameter (Figure 12).

Figure 10. Plotting Neural Network Architecture for Each Task.

Figure 11. Regression Neural Network Architecture.

Regression Neural Network

Total Parameters: 391
regularizer: 0.048850275751119686
n_hidden_layers: 2
activation function: relu
Ir: 0.08487121176310336

86 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

Figure 12. Plotting Loss Curve for Each Task.

These are the loss curve plots for each task: regression, binary
classification, and multiclass classification. A loss curve for a MLP
shows how the model’s performance changes during training,
with loss values on the y-axis and epochs on the X axis. It typi-
cally includes training loss, which decreases as the model learns,
and validation loss, which reflects generalization to unseen data.
In a well-performing model, both losses decrease and converge. If
validation loss plateaus or increases while training loss decreases,
it may indicate overfitting. The curve helps identify learning pro-
gress, diagnose issues like underfitting or overfitting, and determi-
ne when to stop training (Figure 13).

Assessment of Model Performance

Regression Task

Once the models have been trained, we can measure their
performance using the test dataset. Although the training data
can be used to gain an insight into the model fitness, it is not a
reliable source of the model’s generalisation error due to its high
complexity and thus risk of overfitting. However, as the test dataset
was not used before, it is essentially new data the model has not
seen. There is not a single metric that can capture the model’s
performance so we will compute the most used and standard
metrics in the literature like root mean square error (RMSE), mean
absolute error (MAE), or R2 (see Supplementary Material for further
details).

To extract the predictions of the model from a given dataset,
we define a function that perform the calculation of the regression
metrics. We will compute the predictions of the model using
the predict method on the model object and pass the data as a
parameter. The results can then be presented in a table format by
creating a pandas DataFrame with all the results. In our case, we
compare the performance on the training, validation and testing
data (Figure 14).

1600

1400

1200

1000

800

600

400

200

Lo
ss

0.0 2.5

Train
Validation

5.0 7.5 10.0
Epoch

Regression Loss Curve

12.5 15.0 17.5

.60

.55

.50

.45

.40

Lo
ss

0 5

Train
Validation

10 15
Epoch

Binary Classification Loss Curve

20 25

1.2

1.1

1.0

0.9

0.8

Lo
ss

0 2

Train
Validation

4
Epoch

Multiclass Classification Loss Curve

6 8

Figure 13. Regression Loss Curve, Binary Classification Loss Curve and
Multiclass Loss Curve.

Once the script is executed, the MLP model’s performance is best
on the training data, with the lowest RMSE (11.17) and MAE (8.86),
and the highest R2 (.78). This is expected as the model is optimized
on this dataset. Performance on the validation and test sets is slightly

87Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

worse but relatively consistent. The validation set shows RMSE of
13.66, MAE of 11.22, and R2 of .64. The test set results are similar with
RMSE of 13.27, MAE of 10.56, and R2 of .71. The consistency between
validation and test results suggests good generalization. The R2 values
indicate moderate to good predictive power, explaining 64-71% of
the variance in the validation and test sets. The similar performance
across datasets suggests the model is not overfitting significantly to
the training data (Table 1).

Figure 14. Computing Regression Performance Metrics for Training, Validation
and Test Datasets.

Table 1. Regression Performance Metrics.

RMSE MAE R2

Train 11.171141 8.862527 .778711
Validation 13.661510 11.218480 .639704
Test 13.267562 10.562508 .710594

An important limitation of neural networks and other black box
model compared to more classical linear models is their lack of
interpretability. Over the last decade however, there has been an
important line of research trying to tackle this limitation. A very
common method to gain insights into the models’ inner workings is
permutation importance of the features (input variables) which allows
to gain a measure on the importance of a giving variable (or feature)
in the models’ overall performance (see Supplementary Material for
further details).

We use sklearn implementation of the technique which requires
the model itself as well as the data used for evaluation, which will
normally be the testing data, and the metric used for measuring the
models’ performance, which will usually be the RMSE for a regression
problem. To pass the sklearn metric to the function we will have to
first transform it to a scorer using the make_scorer function from the
sklearn library. To present the results, we define a function which
takes the output of the sklearn implementation and returns a plot
showing the mean importance for each feature as well as the standard
deviation. The function integrates into the graphical representation the
quantitative values of computed variable importance, accompanied by
their respective confidence intervals. The next script allows to create
function (Figure 15).

The permutation method for the regression task can be implemented
using the following script using the function “permutation_importance”.
When using permutation feature importance with RMSE as the scoring
metric (and greater_is_better = False), the importance of each variable is

Figure 15. Permutation Feature Importance Plotting Function.

88 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

expressed as the “increase in RMSE” caused by permuting that feature.
Higher values indicate greater importance (Figura 16).

Figure 16. Plotting the Permutation Feature Importance for Regression Task.

depression

life_Sat

emot_intel

resilence

gender_male

age

socioec_status_medium

socioec_status_low

Feature Importance

Feature Importance Regression

0 2 4 5 6 10 12

depression PI: 11.15 ± 1.06
life_sat PI: 2.93 ± 0.39
emot_intel PI: 0.87 ± 0.18
resilencie PI: 0.38 ± 0.11
gender_male PI: 0.11 ± 0.06
age PI: 0.04 ± 0.05
socioec_status_Medium PI: -0.01 ± 0.05
socioec_status_Low PI: -0.02 ± 0.03

Figure 17. Feature Importance Regression.

If you run the script, this is the plot of feature importance of
the MLP for the task regression using the permutation procedure.
The order of importance exactly reflects the simulated existing
relationships in the dataset: Depression (-.80), Life satisfaction (.60),
Emotional intelligence (.50), and resilience (.40). The importance of
age (initially .15) is non-significant (.04 ± .05) and also socioeconomic
status (Figure 17).

The MLP model’s solution thus accurately captures the simulated
relationships between the predictor variables and the response
variable, effectively representing the underlying data structure.

Classification Task

For binary and multiclass classification tasks, predictions are
obtained using the MLP model’s predict method. However, many
classification metrics require discrete class labels rather than
probabilities. In binary classification, a threshold (typically .50) is
applied to determine class membership. To convert probabilities
into class predictions, we can utilize the ‘where’ function from the
“numpy” library. This function allows us to efficiently transform
the continuous probability outputs into discrete class labels based
on the chosen threshold.

Model performance is evaluated using various metrics from
the Sklearn library, comparing target and predicted classes. We
focus on specificity, sensitivity, F1-score, AUC, and Cohen’s kappa
score (see Supplementary Material for further details). A custom
function will compute these metrics for training, validation,
and testing datasets, with results presented in a DataFrame.
The following script computes those metrics of the MLP binary
classification task (Figure 18).

The MLP model exhibits robust performance in the binary
classification task, as demonstrated by the metrics. Results for test
set, which provide the most reliable assessment of the model’s ability
to generalize to unseen data, reveal a specificity of .878, indicating a

Figure 18. Computing Binary Classification Performance Metrics.

89Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

strong capacity to correctly identify negative instances. The sensitivity
of .784 reflects a good ability to identify positive instances. The F1-
score of .825 suggests a balanced performance between precision
and recall. The Cohen’s kappa score of .661 signifies a moderate
agreement between predicted and actual classes, exceeding what
would be expected by chance alone. Critically, the high AUC of .926
on the test data confirms the model’s excellent ability to discriminate
between the two classes (Table 2).

Table 2. Binary Classification Performance Metrics.

Specificity Sensitivity F1 Kappa Score ROC AUC

Train .860947 .847682 .846281 .708504 .929131
Validation .781609 .808219 .781457 .586596 .879389
Test .877551 .784314 .824742 .660543 .925970

In classification tasks, results are often visualized using confusion
matrices and ROC curves. Sklearn’s ConfusionMatrixDisplay and

RocCurveDisplay facilitate this. We create a normalized confusion
matrix using the “confusion_matrix” function, passing target
and predicted classes as parameters. The resulting matrix is then
visualized using ConfusionMatrixDisplay, with class labels from the
OneHotEncoder. The plot method displays confusion matrices for
training, validation, and testing data. Similarly, ROC curves can be
plotted using RocCurveDisplay for each dataset. This is the script for
obtaining the confusion matrices (Figure 19 and 20).

The MLP model’s confusion matrix on the testing data reveals good
performance in classifying “High” psychological well-being (88% ac-
curacy) but a tendency to misclassify “low” psychological well-being
as “high” (22% error rate). While “high” classification is strong, “low”
classification accuracy is lower (78%), and misclassification as “high”
is more frequent than the reverse. This suggests a bias toward the
“high” class, warranting potential model adjustments. The slightly
worse results in the MLP binary classification task, compared to the
regression task predicting psychological well-being as a continuous
variable, stem primarily from the nature of the outcome variable

Figure 19. Plotting Binary Classification Confusion Matrix.

Confusion Matrix Training Data Confusion Matrix Validation Data Confusion Matrix Testing Data

High

Low

High

Low

High

Low

.8

.7

.6

.5

.4

.3

.2

.8

.7

.6

.5

.4

.3

.2

.8

.7

.6

.5

.4

.3

.2

.86

.15

.14

.85

High High High
Predicted label Predicted label Predicted label

Low Low Low

Tr
ue

 la
be

l

Tr
ue

 la
be

l

Tr
ue

 la
be

l

.78 .88.22 .12

.19 .22.81 .78

Figure 20. Confusion Matrix Training Data, Confusion Matrix Validation Data and Confusion Matrix Testing Data.

90 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

rather than a deficiency in the MLP model itself. Dichotomizing the
continuous well-being variable into “high” and “low” categories inhe-
rently discards nuanced information about the degree of well-being,
which was available in the regression task. This loss of information
makes the classification problem intrinsically more challenging, as
the model must now discriminate between broad categories lacking
the fine-grained distinctions present in the original continuous scale.
Consequently, the observed difference in performance is largely attri-
butable to the simplification of the outcome variable and the resul-
tant loss of information, rather than an inherent limitation of the MLP
architecture. The nature of the classification is such that it is harder
than regression, even when the same model is used.

To display the ROC curve, we first create the figure and axis of
the plot using the subplots function from matplotlib library. We can
then pass the target class as well as the probabilities belonging to
each class to the “from_predictions” method of the RocCurveDisplay
object as well as specify the axis on which the curve will be plotted.
Finally, we can also set the colour and the label of each curve as well
as set the axis labels and the title of the plot as follows (Figure 21).

Figure 21. Plotting Binary Classification ROC Curves.

The MLP model achieves excellent discrimination between
classes, as evidenced by the high AUC scores. The training and test
datasets both reach an AUC of .93, indicating strong performance and
generalization. The validation dataset, with a slightly lower AUC of
.88, still demonstrates good discrimination ability. All AUC values are
significantly above the chance level (.05), highlighting the model’s
effectiveness (Figure 22).

1.0

.8

.6

.4

.2

.0
.0 .2

False Positive Rate

ROC Curve Binary Classification

Train Data (AUC = .93)
Validation Data (AUC = .88)
Test Data (AUC = .93)
Chance level (AUC = .5)

.4 .6 .8 1.0

Tr
ue

 P
os

it
iv

e
R

at
e

Figure 22. Binary Classification ROC Curves.

Finally, to measure the importance of each input variable we
make use of the “permutation_importance” function again. However,
we now use the AUC as the figure of merit to measure the model’s
performance. To pass the Sklearn metric to the function we have to
first transform it to a scorer using the “make_scorer” function from
the Sklearn library (Figure 23).

Figure 23. Plotting Permutation Feature Importance for Binary Classification.

In this case, the Feature Importance values represent the decrease
in AUC score when each feature is shuffled. Higher values indicate
greater importance for class discrimination. Depression emerges as
the most influential variable (.28 ± .04), while other features appear
non-significant. The importance ranking largely aligns with the MLP
regression task results, barring the non-significant influences (Figure
24).

For the multiclass classification task, we adapt our approach to
handle four classes instead of two. We use the “argmax” function
from numpy to select the class with the highest predicted probability,
then convert these indices to one-hot encoded values using keras’s
“to_categorical” function. Unlike the binary case, many metrics don’t
directly support multiclass values. We address this using a one-
versus-rest approach, computing metrics for each class separately
by treating it as positive and the others as negative. This process is
implemented in a for loop, with results stored in pre-defined lists.

91Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

The final results are presented in a pandas DataFrame, similar to the
binary classification task, but now encompassing metrics for all four
classes (Figure 25).

depression

life_sat

emot_intel

resilence

socioec_status_Medium

socioec_status_Low

age

gender_Male

.00 .05 .10
Feature Importance

Feature Importance Binary Classification

.15 .20 .25 .30

depression PI: .28 ± .04
life_sat PI: .02 ± .01
emot_intel PI: .01 ± .00
resilencie PI: .00 ± .00
socioec_status_Medium PI: -.00 ± .00
socioec_status_Low PI: -.00 ± .00
age PI: -.00 ± .00
gender_Male PI: -.11 ± .00

Figure 24. Feature Importance Binary Classification.

The MLP model’s test set performance reveals varying success
across the four psychological well-being categories. The “low” and

“very much” categories demonstrate superior discrimination, as
evidenced by their high specificities (.969 and .930, respectively)
and AUCs (.934 and .933). This likely stems from these categories
representing the extreme ends of the underlying continuous
psychological well-being scale, leading to clearer differentiation
based on the input features. The somewhat and quite a bit categories,
conversely, exhibit lower specificities (around 0.800) and AUCs
(around .815), suggesting slightly poorer classification. The F1 and
Kappa values confirm this mixed pattern. The poorer performance
in the intermediate categories may be attributable to the artificial
“fuzziness” introduced by the polytomization process of the
continuous output variable in the simulated dataset, where these
categories capture a more heterogeneous group of individuals,
making them inherently more difficult to classify than the more
distinct extreme categories (Table 3).

The process for generating the confusion matrix in the
multiclass task closely mirrors that of the binary case. We use
the same “confusion_matrix” function with normalized output
and pass the resulting object to ConfusionMatrixDisplay. The key
difference lies in the inclusion of all four category names, retrieved
from the OneHotEncoder used in preprocessing, instead of just two.
The plot method is then called to visualize the matrix, providing
a comprehensive view of the model’s performance across all four
classes (Figure 26).

Figure 25. Computing Multiclass Classification Performance Metrics.

Table 3. Multiclass Classification Performance Metrics.

Specificity Sensitivity F1 AUC ROC Kappa Score

Low .969136 .631579 .716418 .933886 .660593
Somewhat .801527 .666667 .652482 .816905 .463425
Quite a bit .800000 .615385 .606061 .812536 .412097
Very much .930233 .714286 .666667 .932724 .608150

92 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

Figure 26. Plotting Confusion Matrix for Multiclass Classification.

.63 .34 .026 0

0

0

0 0

0.20 .62 .18

.29 .71

.072 .67 .26

Multiclass Classification Confusion Matrix

Low Quite a bitSomewhat Very much

Low

Somewhat

Quite a bit

Very much

.7

.6

.5

.4

.3

.2

.1

.0

Tr
ue

 la
be

l

Predicted label

Figure 27. Multiclass Classification Confusion Matrix.

Figure 28. Plotting ROC Curves for Multiclass Classification.

For conciseness, we only compute and present the confusion
matrix for the test set, providing a focused evaluation of the model’s

generalization performance. The MLP model achieves 71% accuracy
in classifying “Very much”, and around 63-67% for the remaining
classes. The primary challenge lies in differentiating adjacent
categories. Notably, 34% of actual low instances are misclassified
as somewhat; somewhat instances have a 26% chance of being
misclassified as quite a bit, while 20% of quite a bit instances are
misclassified as somewhat, and 18% of quite a bit instances are
misclassified as very much. This indicates confusion between
neighboring levels of psychological well-being, and a lower
sensitivity when discriminating quite a bit instances (Figure 27).

To create the ROC curve plot we need to use the one-versus-rest
approach again and compute a ROC curve for each class separately.
Therefore, when computing the ROC curve for the i’th class, we need
to pass the i’th index of both the target outcome and the predicted
probabilities to the RocCurveDisplay function. As this has to be
repeated for each class, we will run the code inside a for loop and
attach a different colour for each curve (Figure 28).

1.0

.8

.6

.4

.2

.0
.0 .2

False Positive Rate

Multiclass Classification ROC curve

.4 .6 .8 1.0

Tr
ue

 P
os

it
iv

e
R

at
e

ROC curve for Low (AUC = 0.93)
ROC curve for Somewhat (AUC = 0.82)
ROC curve for Quite a bit (AUC = 0.81)
ROC curve for Very much (AUC = 0.93)
Change level (AUC = .50)

Figure 29. Multiclass Classification ROC Curve.

The model achieves its highest discrimination for the low and very
much classes, both with an AUC of .93, while the somewhat and quite
a bit classes have AUC values of .82 and .81, respectively (Figure 29).

Finally, for the permutation feature importance we use the AUC
as figure of merit and use the one-versus-rest approach. Thus, we
will have four feature importance plots, one for each class. We set
the average parameter to none and the “multi_class” parameter to

93Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

‘ovr’ inside the “make_scorer” function to compute the AUC for each
class. We then extract the importance mean and importance standard
deviation for each class from the results by accessing the i’th index
for the i’th class. The results can then be plotted separately as the
following script includes. Again, for conciseness, we only display the
ROC curves for the test set (Figure 30).

The importance plot based on the permutation method reveals a
similar structure across all four classes. Depression emerges as the
most important variable in every case, with values ranging from
.22 (quite a bit) to .26 (very much). The solutions also converge on

the second most important variable, Life Satisfaction, which ranges
from .02 to .06. The remaining input variables exhibit virtually ne-
gligible importance (Figure 31).

Conclusions

In this tutorial, we have shown the flexibility of a MLP by applying
the same general Python script, adapted to different predictive tasks:
regression, binary classification, and multiclass classification. By

Figure 30. Plotting Permutation Feature Importance for Each Class.

Figure 31. Feature Importance Plots for Multiclass Classification.

depression

life_sat

emot_intel

socioec_status_Medium

age

resilence

socioec_status_Low

gender_Male

.00 .05 .10

Feature Importance Low

.15 .20 .25 .30

depression PI: .25 ± .04
life_sat PI: .03 ± .01
emot_intel PI: .02 ± .01
socioec_status_Medium PI: .00 ± .00
age PI: .00 ± .00
resilencie PI: -000 ± .00
socioec_status_Low PI: -.00 ± .00
gender_Male PI: -.00 ± .00

depression

life_sat

emot_intel

socioec_status_Medium

socioec_status_Low

age

gender_Male

resilence

depression

life_sat

emot_intel

resilence

socioec_status_Medium

socioec_status_Low

gender_Male

age

.00 .00.05 .05.10 .10

Feature Importance Somewhat Feature Importance Very much

.15 .15.20 .20.25 .25

depression PI: .23 ± .04
life_sat PI: .06 ± .01
emot_intel PI: .02 ± .01
socioec_status_Medium PI: .00 ± .00
socioec_status_Low PI: -.00 ± .00
age PI: -.00 ± .00
resilencie PI: -.00 ± .00
gender_Male PI: -.01 ± .01

depression PI: .26 ± .05
life_sat PI: .02 ± .01
emot_intel PI: .02 ± .00
resilencie PI: .00 ± .00
socioec_status_Medium PI: .00 ± .00
socioec_status_Low PI: -.00 ± .00
gender_Male PI: -.00 ± .01
age PI: -.00 ± .00

depression

life_sat

emot_intel

socioec_status_Medium

resilence

socioec_status_Low

age

gender_Male

.00 .05 .10

Feature Importance Quite a Bit

.15 .20 .25 .30

depression PI: .22 ± .05
life_sat PI: .06 ± .01
emot_intel PI: .02 ± .01
socioec_status_Medium PI: .00 ± .00
resilencie PI: .00 ± .00
socioec_status_Low PI: -.00 ± .00
age PI: -.00 ± .00
gender_Male PI: -.00 ± .00

94 J. Martínez-García et al. / Clínica y Salud (2025) 36(2) 77-95

using “psychological well-being” consistently across tasks, first as
a continuous variable for regression, then dichotomized for binary
classification, and finally polytomized for multiclass classification,
we ensured direct comparability of the results. For each task, we
computed the appropriate evaluation metrics and visualized the
outcomes through relevant plots, providing a comprehensive view of
the model’s performance in different predictive scenarios.

Beyond showcasing the applications of MLP, our goal was to
illustrate the implementation and interpretation of these models in
an accessible way. By systematically presenting the Python scripts and
the corresponding analyses, we aimed to demystify the use of ANNs
in Behavioral and Health Sciences research. The complete script with
the three tasks and a separate one for each task can be downloaded
in the following links: all tasks compiled (link 4), regression task (link
5), binary classification task (link 6), and multiclass classification task
(link 7).

Our learning objective and optimal strategy is to enable
readers to execute all analyses, verify results, and alleviate anxiety
potentially associated with the use of programming languages in
statistical modeling. We assure the reader that the experience is
highly rewarding, particularly for researchers who, in general,
are not familiar with the models at the core of AI, nor specifically
work regularly with platforms that operate using programming
languages. For this reason, we hope this work serves as a practical
guide for researchers unfamiliar with these AI models, encouraging
them to incorporate MLPs into their methodological toolkit and
expanding the range of analytical approaches available for their
studies.

Available Material

Dataset, supplementary material and Python scripts can be found
at the following links:

- 	 Dataset: https://doi.org/10.5281/zenodo.15133067
-	 Preliminaries document: https://doi.org/10.5281/

zenodo.15130945
- 	 Methodology and practical tips in the application of a multilayer

perceptron: https://doi.org/10.5281/zenodo.15131223
- 	 Scripts:
- 	 All tasks compiled: https://doi.org/10.5281/zenodo.15133162
- 	 Regression task: https://doi.org/10.5281/zenodo.15133218
-	 Binary classification task: https://doi.org/10.5281/

zenodo.15133256
- 	 Multiclass classification task: https://doi.org/10.5281/

zenodo.15133279

Highlights

- Simplifying Complex Concepts: This tutorial helps to demystify
ANNs by breaking down the backpropagation algorithm into
manageable steps. Readers will gain hands-on experience in Python,
empowering them to confidently replicate analyses for regression
and classification tasks without feeling overwhelmed.

- Building Confidence in Application: Designed for behavioral
scientists, and even for other disciplines, this tutorial bridges theory
and practice, alleviating anxiety around complex models. Learn
to interpret results clearly and effectively, fostering a supportive
environment for innovative applications of ANNs in research and
beyond.

Conflict of Interest

The authors of this article declare no conflict of interest.

Authors’ Contributions

JMG developed the Python scripts implementing MLPs with
backpropagation algorithm. JJM contributed the objective of
the manuscript, elaborated technical documentation on ANN
foundations and characteristics, supervised the literature
review of ANNs in Psychology, and optimized various analyses,
particularly the sensitivity analysis. RJ supervised and formatted
the preliminary tutorial document and verified the scripts’
functionality. EG, BC, AN, and FL participated in designing and
implementing the literature review of ANNs applied to Psychology
and prepared the manuscript’s formatting and didactic aspects.
AS, as the Research group’s PI, developed the idea of the tutorial,
prepared the simulated dataset, optimized technical aspects of the
scripts, and reviewed the accuracy of the entire process.

References

Arana, S., Lerousseau, J. P., & Haggort, P. (2024). Deep learning models
to study sentence comprehension in the human brain. Language,
Cognition and Neuroscience, 39(8), 972-990. https://doi.org/10.1080/
23273798.2023.2198245

Barnes, S. J. (2022). In living color? Understanding the importance of
color complexity in listing images for accommodation sharing.
Tourism Management, 90, Article 104487. https://doi.org/10.1016/j.
tourman.2021.104487

Faltyn, M., Krzeczkowski, J. E., Cummings, M., Anwar, S., Zeng, T., Zahid, I.,
Ntow, K. O. B., & Van Lieshout, R. J. (2023). Coding infant engagement
in the face-to-face still-face paradigm using deep neural networks.
Infant Behavior and Development, 71, Article 101827. https://doi.
org/10.1016/j.infbeh.2023.101827

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial
nets. Proceedings of the 27th International Conference on Neural
Information Processing Systems, 2 (pp. 2672-2680). https://doi.
org/10.48550/arXiv.1406.2661

Hassani, H., Silva, E. S., Unger, S., TajMazinani, M., & Mac Feely, S. (2020).
Artificial Intelligence (AI) or Intelligence Augmentation (IA): What Is
the future? AI, 1(2), 143-155. https://doi.org/10.3390/ai1020008

Henninger, M., Debelak, R., Rothacher, Y., & Strobl, C. (2023). Interpretable
machine learning for psychological research: Opportunities and
pitfalls. Psychological Methods. Advance online publication. https://
doi.org/10.1037/met0000560

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm
for deep belief nets. Neural Computing, 18(7), 1527-1554. https://doi.
org/10.1162/neco.2006.18.7.1527

Ho, I. M. K., Cheong, K. Y., & Weldon, A. (2021). Predicting student
satisfaction of emergency remote learning in higher education during
COVID-19 using machine learning techniques. PLOS One, 16(4), Article
e0249423. https://doi.org/10.1371/journal.pone.0249423

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/
neco.1997.9.8.1735.

Hollon, S. D., Cohen, Z. D., Singla, D. R., & Andrews, P. W. (2019). Recent
developments in the treatment of depression. Behavioral Therapy,
50(2), 257-269. https://doi.org/10.1016/j.beth.2019.01.002

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5), 359-
366. https://doi.org/10.1016/0893-6080(89)90020-8

Jabło ska, M. R., & Zajdel, R. (2020). Artificial neural networks for predicting
social comparison effects among female Instagram users. PLoS ONE,
15(2), Article e0229354. https://doi.org/10.1371/journal.pone.0229354

Kolmogorov, A. N. (1957). On the representation of continuous functions of
several variables by means of superpositions of continuous functions
of one variable. Doklady Akademii Nauk SSSR, 114, 953-956. (American
Mathematical Society Translation, 28, 55-59 [1963]).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11), 2278-2324. https://doi.org/10.1109/5.726791

Li, H., Liu, H., Shin, H. H., & Ji, H. (2024). Impacts of user-generated images
in online reviews on customer engagement: A panel data analysis.
Tourism Management, 101, Article 104855. https://doi.org/10.1016/j.
tourman.2023.104855

McKee, P. C., Budnick, C. J., Walters, K. S., & Antonios, I. (2022). College
student Fear of Missing Out (FoMO) and maladaptive behavior:
Traditional statistical modeling and predictive analysis using machine
learning. PLOS One, 17(10), Article e0274698. https://doi.org/10.1371/
journal.pone.0274698

Piloto, L.S., Weinstein, A., Battaglia, P., & Botvinick, M. (2022). Intuitive
physics learning in a deep-learning model inspired by developmental

https://doi.org/10.5281/zenodo.15133162
https://doi.org/10.5281/zenodo.15133218
https://doi.org/10.5281/zenodo.15133256
https://doi.org/10.5281/zenodo.15133279
https://doi.org/10.5281/zenodo.15133067
https://doi.org/10.5281/zenodo.15130945
https://doi.org/10.5281/zenodo.15130945
https://doi.org/10.5281/zenodo.15131223
https://doi.org/10.5281/zenodo.15133162
https://doi.org/10.5281/zenodo.15133218
https://doi.org/10.5281/zenodo.15133256
https://doi.org/10.5281/zenodo.15133256
https://doi.org/10.5281/zenodo.15133279
https://doi.org/10.5281/zenodo.15133279
https://doi.org/10.1080/23273798.2023.2198245
https://doi.org/10.1080/23273798.2023.2198245
https://doi.org/10.1016/j.tourman.2021.104487
https://doi.org/10.1016/j.tourman.2021.104487
https://doi.org/10.1016/j.infbeh.2023.101827
https://doi.org/10.1016/j.infbeh.2023.101827
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.3390/ai1020008
https://doi.org/10.1037/met0000560
https://doi.org/10.1037/met0000560
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1371/journal.pone.0249423
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.beth.2019.01.002
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1371/journal.pone.0229354
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.tourman.2023.104855
https://doi.org/10.1016/j.tourman.2023.104855
https://doi.org/10.1371/journal.pone.0274698
https://doi.org/10.1371/journal.pone.0274698

95Decoding Artificial Intelligence: A tutorial on Neural Networks in Behavioral Research

psychology. Nature Human Behaviour, 6(9), 1257-1267. https://doi.
org/10.1038/s41562-022-01394-8

Qamar, S., Mujtaba, H., Majeed, H., & Beg, M. O. (2021). Relationship
identification between conversational agents using emotion analysis.
Cognitive Computation, 13(3), 673-687. https://doi.org/10.1007/
s12559-020-09806-5

Ramírez, P. E., Rondán, F. J., Arenas, J., Grandón, E. E., Alfaro, J. L., & Ramírez,
M. (2021). Segmentation of older adults in the acceptance of social
networking sites using machine learning. Frontiers in Psychology,
11(12), Article 705715. https://doi.org/10.3389/fpsyg.2021.705715

Roads, B. D., & Mozer, M. C. (2021). Predicting the ease of human category
learning using radial basis functions networks. Neural Computation,
33(2), 376-397. https://doi.org/10.1162/neco_a_01349

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. W. (1986). Learning
internal representations by error propagation. In D. E. Rumelhart & J.
L. McClelland (Eds.), Parallel distributed processing (pp. 318-362). MIT
Press.

Schoene, A. M., Bojani , L., Nghiem, M. Q., Hunt, I. M., & Ananiadou, S.
(2023). Classifying suicide-related content and emotions on twitter
using graph convolutional neural networks. IEEE Transactions on

Affective Computing, 14(3), 1791-1802. https://doi.org/10.1109/
TAFFC.2022.3221683

Song, Z. (2021). Facial expression emotion recognition model integrating
philosophy and machine learning theory. Frontiers in Psychology, 12,
Article 759485. https://doi.org/10.3389/fpsyg.2021.759485

Vezzoli, M., & Zogmaister, C. (2023). An introductory guide for conducting
psychological research with big data. Psychological Methods, 28(3),
580-599. https://doi.org/10.1037/met0000513

Wang, J., Liu, J., & Tang, J. (2021). Utilizing deep learning and oversampling
methods to identify children’s emotional and behavioral risk. Journal
of Psychoeducational Assessment, 39(2), 227-241. https://doi.
org/10.1177/0734282920951727

Wawer, A., & Chojnicka, I. (2022). Detecting autism from picture book
narratives using deep neural utterance embeddings. International
Journal of Language & Communication Disorders, 57(5), 948-962.
https://doi.org/10.1111/1460-6984.12731

Wei, W., Hong, H., & Wu, X. (2021). A hierarchical view pooling network
for multichannel surface electromyography-based gesture recognition.
Computational Intelligence and Neuroscience, 1, Article 6591035.
https://doi.org/10.1155/2021/6591035

https://doi.org/10.1038/s41562-022-01394-8
https://doi.org/10.1038/s41562-022-01394-8
https://doi.org/10.1007/s12559-020-09806-5
https://doi.org/10.1007/s12559-020-09806-5
https://doi.org/10.3389/fpsyg.2021.705715
https://doi.org/10.1162/neco_a_01349
https://doi.org/10.1109/TAFFC.2022.3221683
https://doi.org/10.1109/TAFFC.2022.3221683
https://doi.org/10.3389/fpsyg.2021.759485
https://doi.org/10.1037/met0000513
https://doi.org/10.1177/0734282920951727
https://doi.org/10.1177/0734282920951727
https://doi.org/10.1111/1460-6984.12731
https://doi.org/10.1155/2021/6591035

	_headingh.pv7r4cz308q
	_headingh.u6nxxz307pfi
	_Hlk196672700
	_Hlk196672805
	_headingh.xrk975e5qmvj
	_headingh.mnuxqyjvhib3

