
The attention deficit hyperactive disorder (ADHD) is described 
as a continuous trend of inattention, impulsivity, and hyperactivity 
that significantly affects adaptive skills and brain maturation 
(Vainieri et al., 2023). Inattention manifests itself in distractibility 
during task performance, failure to follow instructions, difficulty 
maintaining concentration, and disorganization. Hyperactivity 
includes excessive motor activity and behaviors such as running, 
climbing, or excessive talking, while impulsivity refers to rash 
actions without considering consequences, such as interrupting 
people or making unexpected decisions. This condition has a 
multifactorial etiology, encompassing genetic, neurobiological and 
environmental components. The heritability of ADHD is estimated 

at 74% (Uchida et al., 2023). Genetic studies performed with DNA 
sequencing have identified polymorphisms in some genes (ADGRL3, 
DRD4, SNAP25) (Cervantes-Henriquez et al., 2022). Factors such as 
low birth weight, gestational exposure to tobacco and neurotoxins 
are predisposing to this clinical condition (American Psychiatric 
Association [APA, 2021]).

The detection of ADHD in children is a difficult task for health 
specialists due to the diversity of its symptoms and the high 
comorbidity with other neurodevelopmental, emotional and 
behavioral psychopathologies (Elwin et al., 2020). This nosology 
affects approximately 5.9% of the child population worldwide, 
marking the need for accurate and objective diagnostic methods 
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A B S T R A C T

Background/Objective: ADHD impacts about 5.9% of infant populations worldwide. Its diagnosis is traditionally based 
on clinical assessment and psychometric test results. Actually, machine learning (ML) has begun to be used to identify 
various neurodevelopmental conditions, favoring diagnostic accuracy. This research aimed to develop a meta-analysis 
and systematic literature review (SLR) on the application of ML techniques for the identification of ADHD in children 
using electroencephalograms (EEG). Method: Using the PRISMA methodology, 30 studies were selected from Scopus 
and Web of Science (WoS) that met the selection criteria. Results: The most commonly used ML technique was support 
vector machines. The models evaluated achieved accuracy rates of up to 94.92%, indicating their ability to diagnose ADHD. 
Conclusions: Predictor variables such as frequency power, neuronal connectivity, and entropy are useful for identifying 
characteristic patterns in EEG signals, that reflect neuronal dysfunction associated with ADHD. 

El diagnóstico del TDAH en niños con EEG y el aprendizaje automático: revisión 
sistemática y metaanálisis

R E S U M E N

Antecedentes/Objetivo: El TDAH impacta cerca del 5.9% de la población infantil a nivel mundial. Su diagnóstico 
tradicionalmente se basa en la valoración clínica y resultados de pruebas psicométricas. Actualmente, el aprendizaje 
automático (ML) ha comenzado a utilizarse para identificar diversas condiciones del neurodesarrollo, favoreciendo la 
precisión diagnóstica. El objetivo de esta investigación fue realizar un metaanálisis y una revisión sistemática de la literatura 
científica (RSL) acerca del uso de técnicas de aprendizaje automático para la detección del TDAH en población infantil 
mediante electroencefalogramas (EEG). Método: Mediante la metodología PRISMA se seleccionaron 30 estudios de Scopus y 
Web of Science (WoS) que cumplieron con los criterios de selección. Resultados: La técnica de aprendizaje automático más 
utilizada fue la de máquinas de vectores de soporte. Los modelos evaluados alcanzaron una precisión de hasta el 94.92%, lo 
que prueba su capacidad para diagnosticar el TDAH. Conclusiones: Variables predictoras como la potencia de frecuencia, 
la conectividad neuronal y la entropía son útiles para la detección de patrones característicos de las señales del EEG, que 
reflejan la disfunción neuronal asociada al TDAH.
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(Al-Wardat et al., 2024). Traditional procedures are based on 
psychometric scales and clinical examinations that may vary among 
professionals, assessment centers, methodologies employed and 
individual criteria of specialists, which detracts from objectivity 
(Vahid et al., 2019). This variability and diagnostic subjectivity have 
led the scientific community to explore new methods that offer 
greater accuracy (Z. S. Chen et al., 2022).

One of the technologies that is beginning to emerge in this field is 
ML applied to EEG analysis, which is a neurophysiological tool that 
captures brain electrical activation and provides precise temporal 
resolution, making it suitable for evaluating and diagnosing children 
with ADHD (Parashar et al., 2021). Research has reported that 
minors with this condition present different brain activity patterns 
compared to peers without this nosology (Cortese et al., 2021; 
Michelini et al., 2022). These can be captured and analyzed through 
the application of procedural signal methods and ML algorithms, 
constituting a diagnostic alternative (Parlatini et al., 2024).

Some ML predictive models such as decision trees (DT), logistic 
regression (LR), support vector machines (SVM), and random forests 
(RF), have been used to classify and predict the presence of ADHD in 
children. Moreover, artificial neural networks (ANN) and k-nearest 
neighbors (k-NN) have proven effective in determining complex 
EEG parameters, which improves diagnostic accuracy, tools that 
overcome the limitations of conventional methods (Kautzky et al., 
2020; Rostami et al., 2020).

Predictor variables such as frequency power, neuronal 
connectivity and entropy have allowed ML models to identify 
characteristic patterns in EEG signals associated with ADHD. Alpha 
(α) and beta (β) waves have been useful in differentiating minors 
with ADHD from typical control groups by analyzing nonlinear, 
ANN and SVM signals (Alam et al., 2022). Neural connectivity, 
which assesses the interaction between different brain regions, 
and entropy, which measures the complexity or disorder of signals, 
reflect neural dysfunctions associated with ADHD. The highest 
predictive sensitivity has been observed in right hemisphere 
channels, indicating the importance of brain lateralization in the 
detection of ADHD and suggesting that differences in regional 
brain activity are an indicator of this disorder (Zou & Yang, 2021).

This research aimed to perform a meta-analysis and an SLR on 
the use of ML techniques for the diagnosis of ADHD in children 
using EEG. The research question guiding the analysis was: “How 
has ML with EEG been used to detect ADHD in children?”. The 
use of ML in the EEG study not only improves the accuracy of 
ADHD detection but also facilitates a more objective and reliable 
assessment, overcoming the limitations of conventional methods, 
which could boost the integration of these tools in clinical 
practice.

Method

Search Strategies

This study analyzed research that used ML models to predict 
ADHD in children. The variables were: ADHD diagnosis (target)  and 
EEG-derived data (predictors). The guidelines for the systematic 
review and meta-analysis were developed and managed with 
CADIMA Centro Leibniz de Investigación del Paisaje agrícula [ZALF, 
2024]. The methodology followed PRISMA guidelines (Page et 
al., 2021). The WoS and Scopus repositories were used to track 
publications, with a viewing window from January 2012 to July 
2024. Research applying ML techniques to the analysis of EEG 
signals for the diagnosis of ADHD began to be published in 2012. 
There were no language or subject area restrictions in the study. 
Some of the disciplines included were medicine, neuroscience, 
computer science, engineering, psychology, genetics, social 

sciences, biological engineering and molecular biology. The Medical 
Subject Headings (MeSH) (National Library of Medicine, 1960) were 
used to identify appropriate search terms. The exploration was 
performed by an expert group in neuroscience and engineering. 
The equation used in Scopus (TITLE-ABS-KEY) and WoS (All Fields) 
is presented below. 

Scopus (26)
TITLE-ABS-KEY (“ADHD” OR “Attention Deficit 

Hyperactivity Disorder” AND “Machine Learning” AND 
“Children” AND “EEG”) AND PUBYEAR > 2011 AND 
PUBYEAR < 2025 AND (LIMIT-TO (OA, “all”))

WoS (47)
“ADHD” OR “Attention Deficit Hyperactivity 

Disorder” AND “Machine Learning” AND “Children” 
AND “EEG” (Topic)

Eligibility Criteria

To minimize bias in the publications included in the meta-
analysis and SLR, precise and rigorous inclusion criteria were 
established: (1) empirical and structured studies, (2) focused on 
the diagnosis of ADHD with ML in children, (3) using EEG data as 
predictor variables, (4) employing training and validation samples, 
(5) using ML-specific metrics to assess model performance, (6) open 
access publications. Exclusion criteria were: (1) studies in adults, 
(2) without data standardization, (3) literature reviews, single 
cases, memoirs, monographs or technical manuals, (4) studies with 
data from psychometric testing, spectrograms, genetic data, MRIs 
actigraphy, accelerometer or virtual reality, (5) no age reporting 
of sample groups, (6) ADHD with comorbidities or associated with 
genetic syndromes, (7) unsupervised learning ML models, (8) with 
Accuracy less than 65%.

Data Collection, Data Analysis, and Bias Assessment

Two reviewers independently assessed the title and abstract 
according to the established eligibility criteria. Any disagreement 
was discussed with the third reviewer and resolved by consensus. 
An adapted checklist designed to ensure that the selected 
publications were relevant to the object of study of this SLR was 
used (Mohamed Shaffril et al., 2021). The checklist included: (a) 
study design, with a description of the problem statement and 
the inclusion requirements of the research units; (b) construction 
of the ML predictive models that contemplated the same target 
variable; (c) analysis of results, focusing on model performance, 
description of statistics, and conclusions; and (d) interpretation 
with generalization of findings, limitations, and formulation of new 
hypotheses.

Initially, 28 publications were identified in Scopus and 39 in 
WoS, totaling 67; 15 duplicates were eliminated from the two 
search engines, leaving 52 publications in total. The three reviewers 
considered 30 studies that met the eligibility criteria adequate and 
discarded 22 for the following reasons: (1) studies in adults: 6, 
(2) no data standardization: 0, (3) literature reviews, single cases, 
memoirs, monographs, meta-analyses or technical manuals: 5, (4) 
studies with psychometric test data, spectrograms, genetic data, 
MRI, actigraphy, accelerometer or virtual reality: 2, (5) ADHD with 
comorbidities or associated with genetic syndromes: 4, (6) without 
reporting age of sample groups: 1, (7) unsupervised learning 
ML models: 3, and (8) with precision (accuracy) less than 0. 65: 
1. Twenty-six articles were included in the meta-analysis that 
reported the complete metrics of the optimal ML model: Accuracy, 
Sensitivity (Detection) and Specificity (Exclusion). Four articles 
were eliminated that, although reporting accuracy, did not include 
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sensitivity (2) or specificity (4). Figure 1 presents the PRISMA 
flowchart (Page et al., 2021).

Organization of Selected Publications
The sample groups, age of participants, ML models, performance 

metrics, validation, EEG waveforms and evaluated condition 
(cognitive task, closed eye and open eye) of the 30 selected 
publications are presented in Table 1. The order of tabulation of the 
studies was assigned according to the ML model constructed: SVM 
models appear first (9), followed by CNNs (4), ANNs (2), k-NNs (2) 
and Naïve Bayes (2). In Table 1, starting from row 20, 11 articles are 
reported that employ different techniques: K2 Bayesian networks 
(1), ConvMixer-ECA (1), eXtreme Gradient Boosting (XGB) (1), 
Explainable Boosting Machine (EBM) (1), Gaussian Process with 
Radial Basis Kernel (GF-RBF) (1), Generalized Linear Model (GLM) 
(1), Sparse Non-Negative Least-Square coding (SNNLSC) (1), Monte 
Carlo Simulation (1), Bagged Tree (BT) (1), CatBoost (1) and Random 
Forest (RF) (1).

Results

From the 30 selected studies, we extracted data reported in 
Table 1, (1) the citation of each study, (2) the sample size, (3) the 
age of the participants, (4) the optimal ML model, (5) the scores of 
the performance metrics, (6) the type of validation employed, (7) 
the waves and frequencies in Hertz observed in the conditions: 
cognitive task, eyes closed and eyes open; the findings presented 
under these three conditions correspond to specific characteristics 
of the EEGs of the experimental group (ADHD).

Qualitative Analysis

From the selected research, it was identified that the applying 
of ML for the diagnosis of ADHD with EEG has increased in recent 

years. Although the first papers date back to 2012, it was not until 
2023 that this trend began to consolidate. In 2017 there was one 
publication, and in 2018 two. Interest increased in 2019 with three 
publications, and in 2020 it remained at two. In the following 
years, there were fluctuations, with ten publications, marking the 
importance of strengthening the use of ML for this diagnosis. In 
2024, there were five publications, reflecting a sustained interest in 
this area of research (Peterson et al., 2024).

Of the 30 publications chosen, sample groups ranged from 10 
to 135 participants. Appropriate sample size is critical for training 
ML models; external validation studies with insufficient sample 
sizes may yield inaccurate estimates of model efficacy, affecting 
calibration, discrimination and clinical utility. Studies should 
include at least 100 cases to ensure accurate validation (Riley et 
al., 2021). The diagnosis of ADHD requires identifying the three 
clinical presentations (inattentive, hyperactive-impulsive or 
combined). Only four of the papers reported ADHD presentation 
in their analyses (Bashiri et al., 2017; Chen, Chen, et al., 2019; Li 
et al., 2023) and 28 studies included clinical groups (ADHD) and 
healthy controls. The inclusion of a control group allows reliable 
comparisons between minors with ADHD and those with normal 
development and provides a baseline to assess differences in 
cognitive and neurophysiological metrics (Zhao et al., 2020). 
Regarding sex information, 16 studies mentioned the distribution 
between girls and boys (Alkahtani et al., 2023; Feng & Xu, 2024; 
Karabiber Cura et al., 2023). 

Previous studies have highlighted that minor girls with ADHD 
are often diagnosed later than minors boys, due to the prevalence of 
emotional clinical manifestations that often hinder the identification 
of ADHD symptoms. Referring to gender is important, because 
of differences in clinical presentation and symptomatology that 
influence diagnosis and appropriate treatment (Klefsjö et al., 2020; 
Mayes et al., 2020). The modal age range in the selected publications 
was 7 to 12 years, which coincides with studies indicating that it is 
in this period when ADHD symptoms become more evident, cease 

Number of publications identified (N = 67)

Number of publications identified - Scopus (n = 28)

Number of publications screened (n = 52) 
Number of excluded publications (n = 22)
- Criterion 1: (n = 6)
- Criterion 2: (n = 0)
- Criterion 3: (n = 5)
- Criterion 4: (n = 2)
- Criterion 5: (n = 4)
- Criterion 6: (n = 1)
- Criterion 7: (n = 3)
- Criterion 8: (n = 1)

Number of publications excluded from meta-analysis (n = 4).
- No accuracy reported: (n = 0)
- No sensitivity reported: (n = 2)
- No specificity reported: (n = 4)

Number of full-text publications evaluated for eligibility (n = 30)

Number of publications included in the qualitative synthesis (n = 30)

Number of publications included in the meta-analysis (n = 26)

Number of duplicate publications (n = 15)

Number of publications identified - WoS (n = 39)Id
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Figure 1. PRISMA Flowchart
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Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Muthuraman  
et al., 2019)

N = 22
n = 11 ADHD
n = 11 Controls

10-17 SVM Accuracy
98% 
Sensitivity
95% 
Specificity
96%

10-Layer Cross 
Validation 
(CV)

δ = 1.0-3.0 Hz 
θ = 4.0-7.0 Hz
α = 8.0-13.0 Hz 
β = 14.0-30.0 Hz 
γ = 30.0-49.0 Hz

Working 
memory task.
Variability in the 
power of θ and 
α oscillations 
is related to 
instabilities in 
neural networks 
and fluctuations 
in performance.
A higher 
standard 
deviation in the 
γ band indicates 
variations in 
the dynamics of 
the connections 
involved in the 
task.

Decrease in 
the power of 
α oscillations, 
lower arousal 
level. Increased 
θ, indicates 
increased 
resting state 
information 
processing 
activity.

Thalamo-
cortical 
connectivity is 
unidirectional 
(outflow 
from cortical 
regions), in 
the α, β and 
γ frequency 
bands. Less 
coherence in 
the α and β 
frequencies 
indicates 
worse 
performance 
in focused 
attention.

(Alsharif et al., 
2024)

N = 121
n = 61 ADHD

n = 60 Controls

7-12 SVM Accuracy
94.86% 

Sensitivity
96.33% 

Specificity
93.02%

5-Layer Cross 
Validation 

(CV)

δ = 0.5-4.0 Hz
θ =  4.0-8.0 Hz
α = 8.0-13.0 Hz 
β = 13.0-30.0 Hz 

Continuous 
Performance 

Test. A 
significant 

increase in θ 
and β activity 

indicated 
attention 

difficulties. 
Increased effort 

to maintain 
attention 

and process 
information.

Elevated α 
activity indicates 

differences in 
the regulation 

of attention and 
brain relaxation.

Differences 
in β activity 

reflect 
problems 

processing 
visual stimuli 
and sustaining 

attention.

(Alim & 
Imtiaz, 2023)

N = 120
n = 60 ADHD (48 
boys and 12 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 Gaussian
SVM

Accuracy
93.2% 

Sensitivity
93.2% 

Specificity
90.7%

10-Layer Cross 
Validation 

(CV)

Holdout 
retention 
validation

93.2%

δ = 0.5-4.0 HZ 
θ = 4.0-8.0 HZ 
α = 8-13 HZ 
β = 13-30 Hz 

Visual attention 
task. elevated 

θ activity, 
indicates deficits 

in attention.
Decreased 
β activity 
observed, 
indicates 

difficulties in 
concentration 
and problem 

solving.

No results are 
specified for this 

condition.

No results 
are 

specified 
for this 

condition.

(Attallah, 
2024)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 C-SVM Accuracy
99.1% 

Sensitivity
98.9% 

Specificity
99.2%

10-Layer Cross 
Validation 

(CV)

δ = 1.0-4.0 Hz 
θ = 4.0-8.0 Hz 

α = 8.0-12.0 Hz 
β = 12-30 Hz 
γ = 30-60 Hz 

Visual attention 
task. Greater 

global coherence 
was detected 
in the δ and 

θ waves, 
indicating 

greater difficulty 
in modulating 
brain activity.

A decrease in 
the frequency 
of the α-peak 
was observed. 
They showed 

increased 
neuronal 

activation in 
frontal areas.

Decreased 
α-wave 
activity, 

indicating 
reactivity. 

The θ waves 
were more 

pronounced, 
indicating 

inattention.

(Maniruzzaman 
et al., 2022)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 LASSO 
SVM

Accuracy
94.2% 

Sensitivity
93.3% 

Specificity
90.2%

LOOCV δ = 1.0-4.0 Hz 
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 13-30 Hz 

γ>30 Hz 

Visual attention 
task. Increased 
θ-wave power 

indicates greater 
difficulties in 

attentional 
maintenance in 
the presence of 
visual stimuli. 

High θ / β ratio, 
indicates an 

alteration in the 
balance between 
neuronal activity.

Decreased α 
activity indicates 

difficulties 
in reaching a 
relaxed state. 

Increased θ-wave 
activity (4-8 

Hz), indicates 
inattention 

and tendency 
to reverie or 

distractibility.

The increase 
in β-waves 

was less 
pronounced 
indicating 

problems in 
maintaining 

attention and 
focus.

Elevated 
θ-wave activity 
indicates a sign 
of distractibility 

and difficulty 
concentrating.

Table 1. Selected Research
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Table 1. Selected Research (continued)

Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Li et al., 2023) N = 135
n = 70 ADHD

(54 boys and 16 
girls)

(47 Inattentive 
and

 23 combined)
n = 65 Controls
(45 boys and 20 

girls)

7-14 Lineal
SVM

Accuracy
91.1% 

Sensitivity
91.43% 

Specificity
90.76%

5-Layer Cross 
Validation (CV)

δ = 1.0-4.0 Hz 
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 13-25 Hz

Pop-out visual 
search

Decreased 
accuracy and 

longer reaction 
times, less 

accurate neural 
decoding in 

spatial coding 
in the parieto-
occipital lobe. 

Deficits in 
attentional 
orientation.

No results are 
specified for this 

condition.

A decrease in 
α-wave power 

indicates 
cortical 

inhibition 
and reflects 

an inability to 
block irrelevant 

stimuli.

(Abibullaev  
& An, 2012)

N = 10
n = 7 ADHD

n = 3 Controls

7-12 SVM Accuracy
97.0% 

Sensitivity
90.0%

5-Layer Cross 
Validation (CV)

δ =  0.5-3.5 Hz
θ = 3.5-7.5 Hz 

α = 7.5-13.0 Hz 
β = 13.0-30.0 Hz 

CPT
Increased θ 

activity (3.5-
7.5 Hz) and 
decreased β 
activity. The 
θ activity is 

associated with 
a distracted or 
dreamy state, 

indicating 
attentional 
difficulties.

The relative 
reduction in α 
activity (7.5-13 
Hz), indicates 

relaxed alertness.

Lower β 
activity (13-30 
Hz) indicates 
difficulties in 

attentional 
maintenance 
and alertness 

states.

(Öztoprak  
et al., 2017)

N = 108
n = 70 ADHD

n = 38 Controls

6-12 SVM Accuracy
99.5% 

Sensitivity
84.0%

Specificity
74.0%

5-Layer Cross 
Validation (CV)

δ =  1.0-4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-12.0 Hz 
β = 12.0-30.0 Hz
 γ = 30-100 Hz

Test 
STROOP
Lower 

performance 
in response 

accuracy and 
reaction times, 

due to increased 
δ and θ, indicates 

cognitive 
overload 

and lower 
information 
processing 
efficiency

Increased activity 
in the θ and β 

bands.

Increased 
activity in the θ 

and β bands.

(Chen, Chen, et 
al., 2019)

N = 108
n = 50 ADHD (41 
boys and 9 girls) 
(26 Inattentive y 

24 Combined)
n = 58 Controls 
(44 boys and 14 

girls)

9-12 SVM Accuracy
84.59% 

10-Layer Cross 
Validation (CV))

δ<4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 12.0-30.0 Hz

Lower complexity 
of EEG signals, 

particularly 
in frontal and 

occipital regions, 
indicates less 

neuronal activity 
and less efficient 

cognitive 
processing.

The δ power was 
higher in all brain 

regions. The α 
and β power was 

lower in most 
brain regions. 

Lower activation 
in temporal and 
occipital regions.

No report

(Moghaddari et 
al., 2020)

N = 61
n = 31 ADHD (22 
boys and 9 girls)
n = 30 Controls 
(25 boys and 5 

girls)

7-12 CNN Accuracy
98.51% 

Sensitivity
98.48% 

Specificity
98.49%

10-Layer Cross 
Validation (CV)) 

δ = 0.5- 3.5 Hz
θ = 3.5-8 Hz
α = 8-13 Hz
β = 13-30 Hz
γ = 30-48 Hz

Continuous 
Attention Test.
Increase in θ, 

greater cognitive 
effort.

Increase in 
β, greater 

information 
processing.

Increase in δ, 
a tendency 

toward 
drowsiness. 
Increase in 
θ, internal 

distraction. 
Decrease in α, 
difficulties in 

reaching a state 
of conscious 
relaxation. 

Decrease in β, 
difficulties in 
maintaining 

the necessary 
cognitive 
alertness.

Decrease in 
α activity, 

less cortical 
inhibition.
Increased 
β activity, 
increased 
alertness. 

Increase in γ 
activity, higher 

cognitive 
processing.
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Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Chen, Song, et 
al., 2019)

N = 107
n = 50 ADHD (41 
boys and 9 girls)

n = 57 Controls (43 
boys and 14 girls)

9-11 CNN Accuracy
92.06% 

Sensitivity
97.0% 

10-Layer Cross 
Validation (CV))

δ = 0.5-4 Hz 
θ = 4- 8 Hz 
α = 8-13 Hz 
β = 13-30 Hz 
γ = 30-40 Hz

 Test 
STROOP

Increase in β 
and θ. Cognitive 

overstrain in 
attentional tasks.

Increased α and 
θ, excessive or 
unusual brain 

activity.

Decrease in α, 
difficulty in 

maintaining a 
resting state in 
the presence of 
visual stimuli. 

Increase in 
β difficulty 
in reaching 

optimal levels 
of alertness 

without 
overloading the 
neural system.

(Mafi & Radfar, 
2022)

N = 121
n = 61 ADHD

n = 60 Controls

7-12 CNN Accuracy
98.56% 

Sensitivity
99.25% 

Specificity
99.0%

5-Layer Cross 
Validation (CV)

δ = 1-4 Hz
θ = 4-8 Hz

α = 8-13 Hz
β = 13-30 Hz
γ = 30-40 Hz

Comic strip 
counting task.

Greater 
variability in the 

power of the 
oscillations θ 

and α indicates 
instabilities 

in the neural 
networks and 
fluctuations in 
performance. 

Greater variance 
in γ, indicates 
variations in 

neural network 
dynamics.

Significant 
reduction in 
the power of 
α-oscillations 

indicates lower 
cortical activation 
and dysfunction 

in neuronal 
synchronization 

during the 
resting state.

Greater 
variability in 
the θ and α 

bands indicates 
instability in 

the neural 
network 

associated 
with attention 

and visual 
processing.

(TaghiBeyglou 
et al., 2022)

N = 121
n = 61 ADHD

n = 60 Controls

7-12 CNN Accuracy
95.83% 

Sensitivity
92% 

Specificity
96%

5-Layer Cross 
Validation (CV)

α = 8-12 Hz 
δ = 0.5-4.0 Hz 

Visual Attention. 
Pronounced 

activation in the 
α-band (8-12 
Hz). Indicates 

increased 
distraction and 

extra effort 
to maintain 
attention.

Increased 
activity in the 
δ band (0.5-4 

Hz). This pattern 
is consistent 

with neuronal 
hyperactivity and 
difficulty to relax.

Activity in 
the α-band 

was notable, 
indicating 

difficulties in 
maintaining 

constant 
attention.

(Bashiri et al., 
2018)

N = 95 ADHD (72 
boys and 23 girls)
(15 = Hyperactive/
Impulsive - 5 girls 

and 10 boys, 30 
Inattentive - 7 

girls and 23 boys, 
44 Combined 11 
girls and 33 boys 

and 6 Unspecified-
All children)

7-18 ANN
Multilayer 
Perceptron

Accuracy
93.7% 

Sensitivity
90.3%

Specificity
92.5%

2-Layer Cross 
Validation (CV)

δ =  0.5-4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 13.0-30.0 Hz 

γ>30 Hz 

IVA-CPT.
Correlation 
between:

-the relative 
power of the FFT 
at α and visual 

divided attention.
-the relative 

power of the FFT 
at β in the O2 and 

Cz regions for 
auditory divided 

attention.

Increase in δ-θ 
power. Reduction 
in β-α power in 
posterior brain 

regions.

Brain wave 
patterns 

showed a 
similar pattern 

to that of 
closed eyes, 

with emphasis 
on reduced 

power in the 
β and α bands, 

suggesting 
reduced cortical 

activity.

(Altınkaynak et 
al., 2020)

N = 46
n = 23 ADHD (16 
boys and 7 girls)

n = 23 Controls (14 
boys and 9 girls)

7-12 ANN-MLP Accuracy
91.3%

Sensitivity
91%

Specificity
91%

LOOCV δ =  0.5-4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-12.0 Hz 
β = 12.0-25.0 Hz
 γ = 50-100 Hz

Oddball 
paradigm. 

Longer latencies 
and smaller 
amplitudes 

indicate a deficit 
in cognitive 
attention.

No report No report

(Tor et al., 2021) N = 123
n = 45 ADHD 

n = 62 ADHD with 
BD

n = 16 BD

6-12  k-NN Accuracy
97.88% 

Sensitivity
96.68% 

Specificity
100%

10-Layer Cross 
Validation (CV))

δ = 0.5-4.0 Hz 
θ = 4.0-8.0 Hz 

α =  8.0-13.0 Hz
β = 13-30 Hz 
γ = 30-50 Hz

No report More repetitive 
and complex θ 
and β signals, 

greater variability 
in brain activity.

Differences in 
δ and γ waves 
with higher 
variability, 

brain activity 
and less 

predictable. 

Table 1. Selected Research (continued)
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Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Ahire et al., 
2024)

N = 121
n = 61 ADHD

n = 60 Controls

7-12 k-NN Accuracy 
87%

Sensitivity
94%

Specificity
 89%

Cross 
Validation 

δ = 0.2-4.0 Hz
θ = 4.0-8.0 Hz

α = 8.0-13.0 Hz
β = 13.0-30.0 Hz

γ<63.0 Hz

 Cartoon figures.
Abnormal γ-wave 
activity indicates 

difficulties in 
the integration 

of visual 
information and 
in maintaining 

attention during 
cognitively 

demanding tasks.

Increased θ and 
δ wave bands, 

indicating slower 
brain activity 
under resting 

conditions.

Decrease in 
α- and β-wave 

bands, indicates 
problems in 
sustaining 

attention and 
behavioral 
regulation.

(Chauhan & 
Choi, 2023)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 Naive-
Bayes

Accuracy
84% 

Sensitivity
82.3% 

Specificity
85.1%

10-Layer Cross 
Validation (CV))

δ = 0.5-4 Hz 
θ = 4-8 Hz 

α = 8-13 Hz 
β = 13-30 Hz 
γ = 30-45 Hz 

Continuous 
Performance 

Test for Children 
(K-CPT).

Lower activation 
in frontal 

regions, which 
are associated 
with attention 
and executive 

control, indicates 
difficulties in 
maintaining 

sustained 
attention and 

consistent 
responses to 

stimuli.

Increased activity 
in the δ, θ, α and 

β bands.

Higher δ-θ 
activity and 
lower α-β 
activity.

(Ahire et al., 
2023)

N = 121
n = 61 ADHD

n = 60 Controls

7-12 Naive Bayes Accuracy 
96%

Sensitivity
100%

Specificity
90.91%

4-Layer Cross 
Validation (CV)

δ = 1.0–4.0 Hz
θ =4.5–8.0 Hz

α = 8.5–14.0 Hz
β = 14.5–25.0 Hz

γ>25.0 Hz

Visual attention 
task.

Increased θ-wave 
activity and 

decreased β-wave 
activity indicates 
decreased ability 
to pay attention 
and to process 

visual data.

They observed 
increases in the 

power of the 
δ and θ bands, 

indicating altered 
brain activity.

Significant 
reduction in 

α-wave activity, 
indicating 
deficits in 

visual attention.

(Pereda et al., 
2018)

N = 33
n = 19 ADHD 

Combined
n = 14 Controls

6-14 Bayesian 
Networks 

K2

Accuracy
PLI rt: 

94.7% PLV 
Rt: 89.5%

Sensitivity
PLI rt: 
94.7%

PLV Rt: 
89.5%

Specificity
PLI rt: 0%
PLV Rt: 
93.3%

5-Layer Cross 
Validation (CV)

δ = 0.5 - 3.5
θ = 3.5 - 8
α = 8 - 13
β = 13 - 30
γ = 30 – 48

No report Modified low-
frequency 

activity in the 
right hemisphere.

Changes in 
functional 

connectivity 
most 

prominent 
in inter-

hemispheric 
connections
hemispheric 
connections.

(Feng & Xu, 
2024)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 ConvMixer-
ECA

Accuracy
94.52%

Sensitivity
96.40%

Specificity
91.59%

5-Layer Cross 
Validation (CV)

Θ = 4-7
α = 8-12
β = 13-30
γ = 30-45

Go/No-Go test 
Increase in 

power θ
Reduction in 

power α

Significant 
increase in 

power θ 
Reduction in 

power α

Decrease in 
power β and 
less power γ

(Chen et al., 
2023)

N = 81
n = 49 ADHD

n = 32 Controls

6-12 XGB 
(eXtreme 
Gradient 
Boosting)

Accuracy
85.45%

5-Layer Cross 
Validation (CV)

Θ = 4-7
α = 8-14
β = 15-24
γ = 25-48

No report Increased δ and 
θ wave activity. 

Significant 
reduction in α 

activity (deficit in 
the relaxed state).

Increase in β 
and γ activity 

(increased 
alertness and 

cognitive 
processing). 
Decrease in 
α activity 
(decrease 
in cortical 
inhibition 

and increase 
in neuronal 

activity). 

Table 1. Selected Research (continued)
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Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Khare & 
Acharya, 2023)

N = 121
n = 61 ADHD

n = 60 Controls

7-12  EBM Accuracy
99.81% 

Sensitivity
99.78% 

Specificity
99.83%

10-Layer Cross 
Validation (CV)

δ = 1.0-3.0 Hz
θ =  4.0-7.0 Hz
α =  10-13 Hz
β = 14-30 Hz 

Visual attention 
task.

They showed 
deficits in visual 

attention.
Activation of 
frontal brain 
regions (Fz, 
F7, Pz, P7, Cz 
channels).

Increased θ 
activity in 

upstream regions 
and reduced 
β activity in 
downstream 

regions.
Increased δ to β 

ratio.

Increased θ 
activity in 
upstream 

regions and 
decreased 

β activity in 
downstream 

regions.

(Maniruzzaman 
et al., 2023)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 GP-RBF Accuracy
97.53% 

Sensitivity
98.46% 

Specificity
96.92%

5-Layer Cross 
Validation (CV)

δ = 0.5-4.0 Hz 
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 13-30 Hz 

γ>30 Hz

STROOP test.
Increased activity 

in the frontal 
regions of the 
brain indicates 
more cognitive 
effort to control 
inhibition and 

attention.

Increased 
activation in 
the θ and α 

alpha frequency 
bands indicates 
dysfunction in 
the ability to 

relax and enter a 
resting state.

Increased 
activation in 
the β-bands, 

indicating 
difficulties in 
maintaining a 

relaxed state of 
alertness.

(Ghasemi et al., 
2022)

N = 60
n = 30 ADHD

n = 30 Controls

4-15 GLM Accuracy
100%

Sensitivity
100%

Specificity
100%

 10-Layer Cross 
Validation (CV)

δ<4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-12.0 Hz 
β = 13.0-30.0 Hz

γ = NR

 VCPT
Differences in 
α and β bands, 

indicates higher 
cognitive effort 

and different 
cortical 

activation.

Differences in 
amplitudes and 

frequency δ 
and θ.

Variations 
in β and α 

frequencies, 
indicating 
increased 

alertness and 
active cognitive 

processing.

(Ghaderyan et 
al., 2022)

N = 33
n = 14 ADHD (10 
boys and 4 girls)

n = 19 Controls (8 
boys and 11 girls)

7-11 SNNLSC Accuracy
99.17%

Sensitivity
98.65%

Specificity
99.56%

10-Layer Cross 
Validation (CV)

δ =  0.5-4.0 Hz
θ = 4.0-8.0 Hz 

α = 8.0-13.0 Hz 
β = 13.0-32.0 Hz
 γ = 32-100 Hz

Time playback 
test. Deficits 

in reproducing 
precise time 

intervals. 
Alterations in β 

and γ frequencies, 
in frontal and 

fronto-parietal 
regions, indicate 

dysfunction 
in networks 

involved in time 
perception and 

cognitive control.

Reduced 
connections in 

the front-parietal 
network indicate 

dysfunction 
of brain 

synchronization 
and information 

integration.

Alterations in 
the connectivity 

of the front-
parietal 

networks 
indicate 

difficulty in 
the regulation 

of attention 
and sensory 
integration.

(Kerson et al., 
2023)

N = 120
n = 51 ADHD

n = 91 Controls

7-10 Monte 
Carlo 

simulation

Accuracy
91%

Sensitivity
85%

Specificity
87%

Cross-
validation using 

Monte Carlo 
simulations

δ =  1.0–4.0 Hz
θ = 4.0–7.0 Hz

α1 = 8.0–10.0 Hz
α2 = 10.0–12.0 Hz
β1 = 12.0–15.0 Hz
β2 = 15.0–18.0 Hz
β3 = 18.0–25.0 Hz
Mayor-β = 25.0–

30.0 Hz​

STROOP test.
Patterns of 

hyper-coherence 
in β2 and β3 

frequencies in 
structures that 
are related to 
executive and 

attentional 
control.

executive and 
attentional 

control.

In δ-θ 
disconnection 

was seen in the 
prefrontal cortex 
(orbitofrontal), 

indicating 
a lack of 

synchronization 
in networks 
involved in 

attention and 
executive control.

High levels 
of hyper-

coherence in 
β-frequencies 

indicate 
excessive 
activity in 

areas of visual 
attention, 
external 

information 
processing 
and rigidity 

in response to 
visual stimuli.

(Karabiber Cura 
et al., 2023)

N = 33
n = 15 ADHD (7 
boys and 8 girls)

n = 18 Controls (14 
boys and 4 girls)

12-13 BT Accuracy 
99.46% 

Sensitivity
99.47% 

Specificity
99.47%

10-Layer Cross 
Validation (CV)

δ≤4.0 Hz
θ = 4.0–8.0 Hz

α = 8.0–13.0 Hz
β = 13.0–30.0 Hz

γ≥30.0 Hz

No report Higher θ-δ 
functional 

connection, 
and lower α-β 
connectivity, 

indicates 
dysfunction 
in the neural 

network 
associated with 

attentional 
regulations 

and inhibitory 
control.

No report

Table 1. Selected Research (continued)
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Cite Sample Age ML Models Metrics Validation EEG Wave Type 
and Frequency (Hz))

Conditions

Cognitive Task Eye Closed (EC) Eye Open 
(EO)

(Alkahtani  
et al., 2023)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 CatBoost Accuracy 
95.13%

Sensitivity
96.23%

Specificity
93.75%

10-Layer Cross 
Validation (CV)

δ =  0.5-4.0 Hz
θ = 4.0-8.0 Hz

α = 8.0-13.0 Hz
β = 13.0-30.0 Hz

Cognitive task
Visual attention 

test.
Lower activation 

in frontal and 
parietal areas of 
the brain, which 

was reflected 
in an increase 
in θ waves and 
a decrease in β 

waves.

Increase in θ and 
a decrease in β.

Increase in θ 
and δ, while α 
and β waves 

showed a 
significant 
reduction.

(Deshmukh et 
al., 2024)

N = 121
n = 61 ADHD (48 
boys and 13 girls)

n = 60 Controls 
(50 boys and 10 

girls)

7-12 RF Accuracy 
84.0%

Sensitivity
77.0%

Specificity
73.0%

5-Layer Cross 
Validation (CV)

θ = 4.0-8.0 Hz
α = 8.0-13.0 Hz
β = 13.0-30.0 Hz
γ = 30.0-100.0 Hz

Auditory Oddball 
Task.

Decrease in 
the amplitude 

of the P300 
component and 
an increase in 

latency indicate 
attention and 

data processing 
problems.

Spectral power 
modification 
in the θ band 
(4.0-8.0 Hz), 

and increases in 
θ-wave activity 

were found.

Lower power 
in the α-band 

indicates 
a deficit 

in cortical 
inhibition.

Note. ADHD-C = ADHD combined; PLI = phase lag index; PLV = phase locking value; δ = delta wave; θ = theta wave; α = alpha Wave; β = beta wave; γ = gamma wave; CV = 
cross validation; EC = eye closed; EO = eye open; CNN = convolutional neural network; MLP = multi-layer perceptron; kNN = k-nearest neighbor; BD = behavioral disorder; 
EBM = explainable boosting machine; SVM = support vector machine; SD = standard deviation; CPT = continuous performance test; K-CPT = Kiddie continuous performance 
test; RNN = recurrent neural network; C-SVM = cubic support vector machine; LOOCV = leave-one-out vross-balidation; CRP = cross recurrence plots; RQA = recurrence 
quantification analysis; GP-RBF = Gaussian process-radial base kernel (RBF); IVA-CPT = integrated visual and auditory continuous performance test; FFT = fast Fourier 
transform; O2 = electrode located in the right occipital region of the brain; Cz = electrode situated in the central part of the scalp in the midline of the scalp; GLM = generalized 
linear model; NR = does not report; VCPT = visual continuous performance test; SNNLSC = sparse non-negative least-square coding; BT = bagged tree; BSFS = backward 
stepwise feature selection; RF= random forest.

Table 1. Selected Research (continued)

to be masked and begin to generate difficulties in the family and 
school context (Espinet et al., 2022; Rocco et al., 2021).

SVMs were employed in nine studies to accurately classify 
ADHD diagnoses, process large volumes of data and create decision 
boundaries in high-dimensional spaces (Pisner & Schnyer, 2020). 
This technique has shown high levels of sensitivity and specificity 
in differentiating between minors with ADHD and those with 
normal neurodevelopment, which can address the heterogeneity 
of ADHD symptoms. However, SVMs are at risk of overfitting when 
the number of features is high compared to sample sizes, making 
interpretation difficult (Bledsoe et al., 2020). In four studies 
employing CNNs, they showed an average accuracy (Accuracy) of 
96.24%, outperforming other ML models, such as ANNs and k-NNs 
(Mafi & Radfar, 2022; Moghaddari et al., 2020; TaghiBeyglou et 
al., 2022). Unlike SVMs, which require manual feature selection 
and may be limited by data linearity, CNNs can capture more 
complex relationships by processing EEG data into time-frequency 
representations without prior feature engineering; this reduces 
the risk of bias and optimizes diagnostic accuracy (Chen, Song et 
al., 2019).

Cross-validation (k-fold) is one of the methods to assess the 
performance of ML models (Ramezan et al., 2019). Validation with 
10 layers (k = 10) was employed in thirteen of the selected studies, 
i.e., the data were divided into 10 subsets. They were trained with 
nine of them and validated with the remaining ones, reiterating 
this process 10 times to ensure that each subset is taken up for 
validation at least once (Alim & Imtiaz, 2023; Attallah, 2024; 
Muthuraman et al., 2019). This method allows the accuracy of 
the model to be evaluated robustly and avoids problems with 
overfitting, diagnostic reliability is increased (Chen, Chen, et 
al., 2019; Moghaddari et al., 2020). In eleven investigations, 
a validation with 5 layers (k = 5) was used, where the data is 

classified into 5 fragments, although this approach reduces the 
number of partitions, it allows a proper evaluation of the model 
performance, with lower granularity compared to that of 10 layers 
(Abibullaev & An, 2012; Alsharif et al., 2024; Li et al., 2023). The 
purpose of the layers is to reduce bias and variance in the model 
results and ensure that new data are generalized (Lei, 2019).

In 22 of the selected studies, different wave frequencies (δ, θ, 
α, β, γ) were used to evaluate eyes closed (EC), eyes open (EO), 
and cognitive task conditions in experimental groups (ADHD) to 
analyze the neurophysiological responses under each condition 
(Ahire et al., 2023; Alkahtani et al., 2023; Maniruzzaman et al., 
2023). EEG is a noninvasive monitoring method that detects 
brain electrical impulses through electrodes placed on the scalp 
(Abdulwahab et al., 2020). During the OC condition the infants in 
the experimental group (ADHD), presented an increase in theta (θ) 
waves and a decrease in beta (β) waves, which contrasts with the 
typical pattern of brain relaxation and synchronization observed in 
typically developing infants (Alkahtani et al., 2023). 

In the EO condition, it was found that in ADHD there are elevated 
levels of hyper-coherence in beta (β) frequencies, suggesting 
excessive activity in areas responsible for visual attention and 
external information processing, reflecting rigidity in response to 
visual stimuli (Deshmukh et al., 2024; Kerson et al., 2023). In the 
cognitive task condition, selected investigations used tests of visual 
attention and found that infants with ADHD present pronounced 
activation in the alpha wave (α = 8-12 Hz), suggesting increased 
distractibility and extra effort for attentional sustainment. 
Increased theta wave (θ) power was evident, indicating difficulty 
in maintaining concentration when confronted with visual stimuli. 
The elevated theta-to-beta (θ/β) ratio in these children shows an 
altered neural balance, hindering the ability to focus and process 
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information (Abibullaev & An, 2012; Öztoprak et al., 2017; 
TaghiBeyglou et al., 2022).

Meta-analysis

To perform the meta-analysis, the accuracy, specificity and 
sensitivity metrics of the selected papers were used. The analysis 
was developed in Python (Python Software Foundation, 2023, 
version 3.12’) (Appendix). First, the data from the 26 studies that 
recorded the three metrics were entered into the software. Second, 
the values of the descriptive statistics for each measure were 
obtained, see Table 2.

Table 2. Descriptive Statistics

Statistics ACC SN SP

n 26 26 26
Mean 94.92 93.91 92.70
SD   4.60   6.04   7.12
Min. 84.00 77.00 73.00
25th percentile 93.32 91.57 90.71
50th percentile 95.48 95.61 93.16
75th percentile 98.54 98.60 98.87
Max. 100 100 100

Note. SD = standard deviation; Min. = minimum; Max. = maximum; ACC = accuracy; 
SN = sensitivity; SP = specificity.

Third, a “Forest Plot” diagram was developed to visualize the 
confidence intervals of the averaged metrics (accuracy, sensitivity, 
specificity) from the studies and to analyze the variability (Figure 
2).

Accuracy

Sensitivity

Specifity

Metric Value

86 88 90 92 94 96 98 100

Forest Plot of Metrics

Figure 2. Forest Plot.

An interval plot is a graphical representation commonly 
used in meta-analysis to visualize the findings of multiple 
investigations, the black dot on the line indicating the value of 
the metric analyzed. Longer horizontal lines indicate greater 
uncertainty in the estimate of effect (specificity) (Dettori et al., 
2021). Most of the articles have an accuracy > 94%, a sensitivity > 
94% and a specificity > 92%, which allows us to conclude that the 
studies analyzed perform well in terms of accuracy, sensitivity 
and specificity, see Figure 2.

Table 3 presents the results of the pooled effect and 
heterogeneity. The pooled effect represents the weighted average 
of the individual studies (Paul & Barari, 2022). The pooled values 
for accuracy, sensitivity, and specificity were 98%, 95%, and 96%, 
respectively, indicating good performance.

Table 3. Combined Effect and Heterogeneity

Criterion ACC SN SP

Combined effect 98.00% 95.00% 96.00%
Heterogeneity (Q) 0.00 0.00 0.00
p-value 1 1 1
I² 0.00% 0.00% 0.00%

Note. ACC = accuracy; SN = sensitivity; SP = specificity.

To measure the heterogeneity of the studies, we used the 
descriptive Q (Equation 1). A value of Q = 0.00 means no variation 
among the studies, i.e., they are completely homogeneous. The 
average effect was obtained from the mean weighted by the 
inverse of the variance of the effect of each study (Equation 1) 
(Huedo-Medina et al., 2006).

(1)

Where:

- wᵢ =  (the inverse of the variance of the i-th study’s 
effect estimate).

- i is the effect estimate of the i-th study.

-  is the overall pooled effect estimate, calculated by (Equation 2):

(2)

To calculate the percentage (%) of variability between studies 
attributed to heterogeneity, the I² statistic was used (Equation 3). 
This indicates the percentage of total variability due to between-
study heterogeneity (Stogiannis et al., 2024). An I² of 0.00% suggests 
no heterogeneity, i.e., the studies are consistent.

(3)

Where:
- Q is the heterogeneity statistic previously calculated.
- k is the total number of studies included in the meta-analysis.
- An I² of 0.00% suggests that there is no heterogeneity, meaning 

that the studies are consistent
The p-value for the Q statistic is obtained from the chi-square 

statistic, with 25 degrees of freedom (n-1). A p-value of 1 indicates 
that there is no evidence of significant heterogeneity between 
studies. The absence of heterogeneity (Q = 0.00, I² = 0.00%) shows 
that the individual studies analyzed are highly consistent, which is 
generally positive because it suggests that the results are reliable 
and generally applicable. 

The heterogeneity analysis revealed that the studies included 
in the meta-analysis were highly consistent, with Q = 0.00 and I² = 
0.00%, indicating no significant variability among the estimated 
effects. A fixed-effect statistical model was used for the pooled result, 
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all studies shared the same true effect and the differences observed 
were due exclusively to sampling error. The fixed-effects model in 
meta-analysis assumes that all studies share the same true value of 
the estimated parameter, so any observed variability is due solely 
to sampling error (Barili et al., 2018; Borenstein et al., 2010). This 
approach assigns greater weight to studies with lower variance and 
is appropriate when heterogeneity is minimal (I² close to 0%), such as 
in this work 

This decision implies that the results obtained are generalizable 
only to the set of studies analyzed and to populations with similar 
methodological characteristics. In contrast, a random-effects 
model, which considers that the studies represent a sample drawn 
from a larger population with variability among them, was not 
necessary because of the homogeneity observed. From a conceptual 
perspective, the homogeneity among the included studies is justified 
by the use of comparable methodologies in predicting ADHD with 
EEG data and machine learning models, employing consistent 
metrics such as accuracy, sensitivity, and specificity. These factors 
reinforce the robustness of the results and their validity within the 
frame of reference defined by the meta-analysis. The findings of the 
meta-analysis indicate that ML techniques applied to the diagnosis 
of ADHD using EEG are effective and reliable as complementary 
tools in the clinical setting (Appendix).

Discussion

The use of SVM to analyze EEG is an effective model for diagnosing 
ADHD (Alim & Imtiaz, 2023; Alsharif et al., 2024; Muthuraman et al., 
2019). The nine selected articles with this technique refer a pattern 
of increased theta (θ) activity and decreased beta (β) activity, 
(Attallah, 2024; Li et al., 2023; Öztoprak et al., 2017). These findings 
indicate cortical hyperactivity accompanied by reduced inhibition, 
and symptomatology that is characteristic of ADHD (Alsharif et al., 
2024; Chen, Chen, et al., 2019; Maniruzzaman et al., 2022).

Research using principal component analysis (PCA) in 
combination with SVM for the diagnosis of ADHD reports several 
cognitive and neuroanatomical alterations. Deficits in attentional 
processing and inhibitory control are evident (Alsharif et al., 2024). 
Problems in emotional regulation and sustained attention capacity 
have also been identified, associated with dysfunctions in frontal 
areas (Alim & Imtiaz, 2023). The features selected by PCA allowed 
the identification of less efficient neural processing in attention 
tasks (Maniruzzaman et al., 2022). Differences in neural spatial 
encoding were detected during cognitive tasks, suggesting altered 
processing in ADHD children (Li et al., 2023). Finally, it is noted that 
dimensionality reduction facilitates better-capturing alterations in 
cortical coordination during attention tasks (Attallah, 2024).

Research using CNN indicates that this technique can capture 
complex and nonlinear patterns of neural connectivity. Thanks 
to their layered structure, they identify spatial and temporal 
relationships between different brain regions through automatic 
extraction of relevant features, which increases diagnostic accuracy 
(Moghaddari et al., 2020; TaghiBeyglou et al., 2022). CNNs highlight 
specific spatiotemporal differences between children with ADHD 
and healthy controls (Chen, Chen, et al., 2019). One paper reported 
specific patterns of altered connectivity between the prefrontal 
lobe, parietal cortex, and motor regions, structures involved in 
executive functionality, attentional regulation, and impulsivity. In 
children with ADHD, these areas showed decreased synchronization 
and coherence, indicating dysfunction in neural communication 
between structures responsible for cognitive processing and 
behavioral regulation (Mafi & Radfar, 2022). 

Moghaddari et al. (2020) transformed EEG signals into RGB 
images in three channels (red/green/blue), representing a 
frequency band of brain activity: theta (θ), alpha (α), and beta (β)/

gamma (γ). This method allowed visualizing particularities in the 
brain activation of minors with ADHD, reporting increased activity 
in the theta (θ) band and a reduction in the beta (β) band, reflecting 
difficulties in regulating attentional and cognitive processes. Similar 
findings were reported in the research of TaghiBeyglou et al. (2022), 
in which an increase in theta (θ) band activation and a decrease in 
the beta (β) band were detected, indicating a neuronal imbalance 
associated with attention and impulse control. In addition, deficits 
were observed in the connections between frontal and parietal 
regions, areas responsible for executive control.

The selected publications that employed RNA indicate reduced 
cortical activity in frontocentral areas, with increased power in 
delta (γ) and theta (θ), and an elevated delta (γ)/beta (β) ratio, while 
reduced alpha(α) and beta (β) activation was observed, especially 
in posterior regions. These alterations are associated with deficits 
in attention, response control, and impulsivity, which are the main 
symptoms of ADHD. Studies posit the frontal cortex as the most 
affected region in ADHD, with reduced amplitudes and prolonged 
latencies in P300 potential responses, which indicates reduced 
complexity in electrical brain activity (Altınkaynak et al., 2020; 
Bashiri et al., 2018).

Consistent in the articles analyzed is the report of alterations in 
theta (θ) and beta (β) waves, reflecting problems in attention and 
cognitive processing (Ghaderyan et al., 2022; Kerson et al., 2023). 
Similarly, Naive Bayes models have referred to modifications in 
theta (θ) and alpha (α) waves, signaling alterations in executive 
functioning and attention (Ahire et al., 2023; Chauhan & Choi, 
2023). More complex models such as eXtreme Gradient Boosting 
(XGB) and ConvMixer-ECA have indicated changes in delta (δ) and 
gamma (γ) wave activity, which are associated with altered cortical 
inhibition and increased cognitive effort (C. C. Chen et al., 2023; Feng 
& Xu, 2024). Techniques such as GP-RBF and Bayesian Networks 
point to marked differences in frontal cortex activity, suggesting 
difficulties in executive function, evidenced by increased theta (θ) 
and delta (δ) activation, and decreased beta (β) and alpha (α) waves 
(Maniruzzaman et al., 2023; Pereda et al., 2018).

Several studies found a decrease in beta (β) wave activity during 
cognitively demanding tasks, reflecting deficits in executive control 
and response inhibition, a characteristic of ADHD infants with this 
condition avoid activities that involve mental effort (Alkahtani et al., 
2023; Khare & Acharya, 2023). Functional disconnection between 
frontal and parietal regions has been reported as a common 
finding, in several publications, a condition that affects the neural 
networks responsible for attention and inhibitory control, which 
contributes to the cognitive dysfunction observed in this clinical 
condition (Ahire et al., 2024; Tor et al., 2021). In terms of cognitive 
processing, deficits in working memory and attentional cognition 
were identified reflected in the reduction of the amplitude of the 
P300 component during the performance of cognitive tasks. This 
pattern suggests impaired information processing in minors with 
ADHD (Altınkaynak et al., 2020; Bashiri et al., 2018; Deshmukh et 
al., 2024). 

Other research shows discrepancies in the alpha (α) and gamma 
(γ) bands, especially as a function of the cognitive task used (Ahire 
et al., 2024; Ghasemi et al., 2022). These variations could be related 
to the diversity of cognitive tests employed, ranging from visual 
attention tasks to time playback tests, resulting in differences in 
brain activation patterns (Karabiber Cura et al., 2023).

Conclusions

ML techniques are effective in classifying ADHD in infants by 
analyzing EEG data. The analyzed models achieved significant 
accuracy rates (94.92%), indicating that they can capture distinctive 
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neural patterns associated with this clinical condition. This favors 
diagnostic accuracy compared to traditional clinical methods.

The papers included in the SLR reported that theta (θ) waves and 
beta (β) waves are predominant in EEG analysis for the detection 
of ADHD. In this population, increased theta (θ) wave activation 
has been observed, associated with distractibility and inattention. 
Beta (β) waves, related to cognitive activity and focus, show a 
reduction, which reflects a deficit to control responses and maintain 
concentration for a prolonged period.

The main limitations of the analyzed publications include the 
small size of the different sample groups, which could compromise 
the extrapolation of the findings to the global population. Most of 
the articles do not classify ADHD according to its presentations 
(inattentive, impulsive/hyperactive or combined), which affects 
diagnostic accuracy. Another limitation is that not all research 
reports sex (boys/girls) when making classifications, which biases 
the results. The findings have not been tested in practical settings, 
which reduces direct applicability to the clinical setting. Future 
work could focus on the integration of multimodal data such as 
EEG, MRI, behavioral and neuropsychological data, to generate an 
accurate and precise diagnosis of ADHD.
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