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Robert Rescorla: Time, Information and Contingency

C.R. Gallistel
Department of Psychology and Rutgers Center for Cognitive Science

A B S T R A C T

Rescorla’s first theoretical and experimental papers on the truly random control (random, independent 
presentations of CSs and USs) showed that associative learning was driven by contingency, that is, by 
the information that events at one time provide about events located elsewhere in time. This discovery 
has revolutionary neurobiological and philosophical implications. The problem was that Rescorla was 
unable to derive a function that mapped conditional probabilities into contingencies. Rescorla and 
Wagner (1972) proposed a hugely influential model for explaining Rescorla’s results, but their model 
ignored his earlier insights about time, temporal order, information and contingency in conditioning. 
Their paper pioneered an empirically indefensible treatment of time that has continued in associative 
theorizing down to the present day. A key to a more defensible approach to the cue competition problem 
(aka the temporal assignment of credit problem) in Pavlovian and instrumental conditioning is to 
measure the information that cues and responses provide about the wait for reinforcement and the 
information that reinforcement provides about the recency of a response.

Robert Rescorla: Tiempo, Información y Contingencia

R E S U M E N

Los primeros artículos teóricos y experimentales de Rescorla sobre el control verdaderamente aleatorio 
(presentaciones aleatorias independientes de ECs y EIs) mostraron que el aprendizaje asociativo estaba 
impulsado por la contingencia, es decir, por la información que los eventos en un momento proporcionan 
sobre eventos ubicados en otro lugar en el tiempo. Este descubrimiento tiene implicaciones filosóficas 
y neurobiológicas revolucionarias. El problema fue que Rescorla fue incapaz de derivar una función que 
determinara la correspondencia entre probabilidades condicionales y contingencias. Rescorla y Wagner 
(1972) propusieron un modelo enormemente influyente para explicar los resultados de Rescorla, pero su 
modelo ignoró sus ideas anteriores sobre el tiempo, el orden temporal, la información y la contingencia en 
el condicionamiento. Su artículo fue pionero en un tratamiento empíricamente indefendible del tiempo 
que ha continuado en la teoría asociativa hasta el día de hoy. Una clave para un enfoque más defendible 
del problema de la competencia estimular (también conocido como el problema de la asignación 
temporal de crédito) en el condicionamiento pavloviano e instrumental es medir la información que 
proporcionan las señales y respuestas sobre la expectativa del refuerzo y la información que proporciona 
el refuerzo sobre la recencia de una respuesta.
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My greatly esteemed former colleague, Bob Rescorla, was the 
finest experimentalist since Pavlov in the field of learning. I consider 
him among the very best in the history of experimental psychology 
and cognitive science. He was also a brilliant theorist, as witness the 
hugely influential paper co-authored with Alan Wagner (Rescorla 
& Wagner, 1972). However, he did not do further theory after that 
dazzling first effort, for reasons I will explain.

That a first-rate scientific mind had come on the scene was 
apparent in the paper Rescorla published in the Psychological 
Review the year after he finished his graduate work at the University 
of Pennsylvania and accepted an appointment as Assistant 
Professor at Yale. In this paper (Rescorla, 1967), he critiqued all 6 
control procedures that had been used in Pavlovian conditioning 
experiments up to that time. As he explained in his opening 
paragraph, (p.73)

“The operations performed to establish Pavlovian conditioned 
reflexes require that the presentation of an unconditioned 
stimulus be contingent upon the occurrence of a conditioned 
stimulus. Students of conditioning have regarded this contingency 
between CS and US as vital to the definition of conditioning and 
have rejected changes in the organism not dependent upon this 
contingency (such as sensitization or pseudoconditioning) as not 
being “true” conditioning (i.e., associative).” [scare quotes on ‘true’ 
in the original]

Prominent among these control procedures were the explicitly 
unpaired control (sometimes misleadingly called the random 
control), in which USs are presented in the same session as the CSs 
but never close in time to the CSs and the Backward conditioning 
control in which the US is presented shortly before the CS. Rescorla 
pointed out that the first of these two “controls” “does not simply 
remove the contingency between CS and US; rather, it introduces 
instead a new contingency, such that the US cannot follow the CS for 
some minimum time interval. Instead of the CS being a signal for the 
US, it can become a signal for the absence of the US.” (p.73)

About the backward conditioning “control:”, he wrote:
Q1 “The relevance of this procedure rests upon the 
assumption that in Pavlovian conditioning not only the CS-
US contingency but also their temporal order of presentation 
is important. It is not clear whether this should be taken 
as part of the definition of Pavlovian conditioning or as an 
empirical result.” In any event, “The occurrence of the CS 
predicts a period free from the US.” [p. 73, italics in original]

He went on to point out that:
Q2: “...in order for there to be no contingency, the 
distributions must be such that CS occurrences do not 
predict the occurrence of USs at any time in the remainder 
of the session. If the CS predicts the occurrence of a US 30 
minutes later in the session, an appropriate random control 
condition has not been achieved.” (p. 74) 

These considerations led him to propose the truly random control 
in which the CS and the US Q3: “...are programmed entirely randomly 
and independently in such a way that some “pairings” of CS and US 
may occur by chance alone.” (p. 73-74).

Only then does
Q4: “ ...the CS provide no information about subsequent 
occurrences of the US.” (p. 74, italics in the original)

He then went on to discuss at length possible objections to this 
control procedure. A common objection was that the chance pairings 
of the CS and US that are inherent in this control would themselves 
produce some conditioning. In response to this objection, he notes 
that

Q5: “It rests upon an assumption, often not made explicit, 
that the temporal pairing of CS and US is the sufficient 
condition for “true” Pavlovian conditioning.” (p. 75, italics 
and scare quotes in original).

He goes on to explain why contingency is not reducible to 
temporal pairing. He shows that they make radically different 
predictions under many circumstances. 

Then, he writes: 
Q6: “The idea of contingency used here needs explication. By 
it we mean the degree of dependency which presentation of 
the US has upon prior presentation of the CS.”

so far so good, but he continues:
Q7: “This is clearly a function of the relative proportion of 
US events which occur during or at some specified time 
following the CS.... These proportions can be stated in terms 
of the probability of a US occurring given the presence 
of a CS (or given that the CS occurred at some designated 
prior time), and the probability of a US occurring given the 
absence of the CS (cf. Prokasy, 1965). The dimension of 
contingency is then a function of these two probabilities; if 
Pavlovian conditioning is dependent upon the contingency 
between CS and US, it, too, will be a function of these two 
probabilities. However, no attempt is made here to specify a 
particular function which relates these two probabilities to a 
continuum of contingencies.” [p. 76]

I have quoted at length from this historically important paper, 
partly because the quotes illustrate Rescorla’s acute critical 
intelligence, but mostly because the extent to which the quoted 
insights have been ignored for more than half a century is the 
beginning of a tragedy in the history of cognitive neuroscience.

The seeds of the tragedy are in Q7. Everything Rescorla wrote up to 
Q7 should have led to a revolution in theories of associative learning 
and in neuroscientific attempts to determine its neurobiological 
basis. What we have had instead are mostly versions of theories that 
are now half a century or more old and a search for the physical basis 
of memory based on conceptual foundations laid by a long line of 
empiricist philosophers stretching back millennia—from Locke and 
Hume to Acquinas and Aristotle (Gallistel, 2020).

What Rescorla stresses repeatedly prior to Q7 is the importance 
of asking what information the onset (or, I may add, the offset) of 
the CS provides about the time of occurrence of the US. He makes it 
clear that answering this question is the key to understanding the 
contingency that a protocol creates. His arguments imply that to 
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understand contingency, we must turn to the theory of information 
(Shannon, 1948), because it makes information measurable. Before 
Shannon, it was not a scientifically useful concept, because: “In 
physical science a first essential step in the direction of learning any 
subject is to find principles of numerical reckoning and methods 
for practically measuring some quality connected with it. When 
you can measure what you are speaking about, and express it in 
numbers, you know something about it, when you cannot express it 
in numbers, your knowledge is of a meager and unsatisfactory kind; 
it may be the beginning of knowledge, but you have scarcely, in your 
thoughts advanced to the stage of science.” (Thomson, 1883, later 
Lord Kelvin, p. 72)

The revolution Rescorla’s analysis called for has failed to happen 
because no practical, mathematically defensible attempt was 
made for the next 50+ years to relate “...these two probabilities to a 
continuum of contingencies.”[italics mine] The attempts that were 
made were unsuccessful, because, when the problem of measuring 
contingency is formulated in terms of finding a function that maps 
from probabilities to contingencies rather than from probability 
distributions to contingencies, it leads into a conceptual wilderness.

We have wandered in that conceptual wilderness because we 
have continued to think in terms of probabilities rather than in 
terms of the distributions of probabilities, and we have failed to 
turn to Shannon to learn how to measure information. Information 
is measured by computing the entropies and relative entropies of 
probability distributions. Probabilities have no units, but entropies 
do (bits or nats). Probability distributions have parameters. The 
parameter of a Bernoulli distribution does double duty, because the 
Bernoulli p is both the parameter and one of the two complementary 
probabilities in the probability vector; the other element of the 
Bernoulli probability vector is q =1–p.

A probability distribution is a 1-1 mapping between two vectors: 
One vector numerically represents the support, the things to which 
the probabilities or probability densities attach. The other vector 
gives the corresponding probabilities or probability densities. 
The Bernoulli support vector is [0 1], where 0 represents “failure” 
and 1 represents “success,” while the corresponding probability 
vector is [q p]. Conceptually, the support vector for an exponential 
distribution of wait times consists of the intervals between 0 
and infinity. In practice—when graphing it for example—it only 
contains a discrete sampling from this uncountably infinite set, 
namely a set of, say, 50 or 100 evenly spaced durations spanning 
the interval where the probability densities are noticeably above 
0. The parameters of distributions, for example, their means and 
variances, are computed from the probability-weighted support 
vector and the probability-weighted vector of the squares of its 
elements (each support element or its square multiplied by the 
corresponding probability).

The uncertainty in a distribution is measured by its entropy. The 
entropy may be computed directly from the probability vector or 
from the value(s) of the distribution’s parameter(s). The entropy 
measures the uncertainty about which element of the support 
vector will obtain on a future occasion (on a new “draw” from 
the distribution). The more uncertainty, the greater the available 
information, that is, the more one learns when the occasion arises 

again and one experiences another draw from the distribution 
(another success or failure or another wait for reinforcement). Put 
another way, the available information is the amount of information 
subjects has to acquire to reduce their uncertainty to 0. Once the 
reinforcement arrives, you no longer have any uncertainty about the 
delay; you have passed from what will happen to what did happen. 
These facts about information and how it is measured are central to 
understanding the tragedy.

Although Rescorla’s paper in the Psychological Review was rich in 
theoretically important insights, they were offered in pursuit of the 
goal of improving experimental procedures. This is consistent with 
what Bob told me decades later when we were colleagues. It came 
in a conversation that began when I asked him why he continued 
to use predictions from Hull’s theory (Hull, 1952) to motivate his 
experiments, given that his experiments always showed that the 
predictions were wrong. He did not dispute my assertion that his 
experiments always showed Hull’s theory to be wrong. He knew 
Hull’s theory was wrong. By the time of this conversation, he was 
disappointed that so many psychologists and neuroscientists failed 
to realize that it was wrong (Rescorla, 1988). Bob said he drew on 
Hull’s theory because it was so good at generating experimentally 
testable predictions. He added that he was an experimentalist not 
a theorist—a remarkable thing to say by a co-author of the best-
known theoretical paper in the field of associative learning. He 
said what he loved was conceiving well designed experiments and 
carrying them out. Among figures at his level of distinction, he was 
unusual in that he continued throughout his career to run his own 
experiments.

Rescorla (1968)
Unfortunately, in describing and theorizing about the 

extraordinarily important results of the experiment that made him 
well known and earned him early-career election to the National 
Academy of Sciences, Rescorla led us further into the wilderness. 
While still a graduate student, he did the first experiment using 
his truly random control. It was somewhat complicated so I pass 
on to the justly famous Rescorla (1968) paper, with its elegant 
methodological simplicity.

The operant phase of training. When rats have been taught to 
press a lever for food on a variable interval schedule they freeze 
when the CS comes on that warns of impending shock. Their 
freezing reduces the rate at which they press the lever. Rescorla 
used the reduction in their rate of pressing for food as his measure 
of the extent to which various Pavlovian conditioning protocols 
produced fear, that is, he used what is called a conditioned-
emotional-response protocol. To do that, he first trained all his 
subjects to press a lever to obtain food on a variable interval (VI) 
schedule of food reinforcement.

A VI schedule sets up food rewards at intervals determined by a 
Poisson process. The scheduling process stops running when it sets 
up a reward. It restarts only when the subject presses the lever to 
harvest the reward. The subject gets no signal when a reward has 
been set up. Put another way, the subject gets no information about 
when a reward has been made available (Q4 and Gallistel, Craig, A., 
Shahan, 2019).

https://doi.org/10.5093/rhp2021a3
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The steady moderate rates of responding that one sees when 
subjects respond on a VI schedule has long intrigued students of 
operant conditioning, which these days is often called reinforcement 
learning. This phenomenon has lessons to teach us about the 
fundamental role that information plays in conditioning.

When rewards are scheduled by a Poisson process, neither the 
time at which the last reward was obtained, nor that the fact that the 
well-trained subject has just made a response provide measurable 
information about how long the subject will have to wait until a 
response produces the next reward. A Poisson process produces an 
exponential distribution of interevent intervals. A unique property 
of the exponential distribution is that it has a flat hazard function 
This means that the chance that a reward is available and may be 
harvested by pressing the lever is the same at every moment after 
the harvesting of the last reward regardless of how much time has 
elapsed since that last reward.

Early in training, when the response rate is very low, there is a 
rate-dependent positive prospective contingency between the rate 
at which a subject presses the lever and the rate at which it obtains 
rewards: When the average interval between a subject’s presses is 
much longer than the average interval at which the Poisson reward 
scheduler sets up rewards, the subjects’ rate of pressing largely 
determines the rate at which it gets rewards; the faster it presses, 
the more rapidly it obtains rewards. This rate-rate contingency 
soon drives subjects to respond at intervals much shorter than the 
average interval at which the schedular sets up the rewards. When 
the response rate, 𝜆r, is much greater than the rate parameter of 
the schedule, 𝜆VI, the schedular determines the rate at which the 
subject obtains reward, that is, 𝜆R≅𝜆VI. When that state of affairs 
obtains, then the prospective contingency between response rate 
and reward rate, 𝜆R, becomes immeasurably small (Gallistel, et 
al, 2019). The variations in 𝜆r between reinforcements no longer 
produce variation in the inter-reinforcement intervals (hereafter, 
the R–>R intervals).

Moreover, when 𝜆r>>𝜆R≅𝜆VI, the entropy of the distribution of 
response-reinforcement intervals (r–>R) is not measurably different 
from the entropy of the R–>R distribution (Gallistel, et al, 2019). 
When those two entropies do not differ, pressing the lever does 
not reduce the subject’s uncertainty about when it will get the next 
reward. Put another way, the prospective contingency between r and 
R is essentially 0.

So, one may ask, why do subjects respond rapidly and steadily 
on variable interval schedules of reward if each press has no effect 
on the distribution of waits for reward? They do so because the 
retrospective contingency, the degree to which reward provides 
information about the events that precede it in time, is 1. The 
retrospective contingency is 1 because every reinforcement is 
immediately preceded by a response at a very short fixed r<–R 
interval. Therefore, the distribution of r<–R intervals has 0 entropy. 
This means that an R time provides the maximal attainable amount 
of information about how long ago the last r occurred (Gallistel, et al, 
2019). One intuitively helpful way to think about why this might be 
important to a subject is that a high r<–R contingency is a signature 
of what Aristotle called efficient causality, the causes that make 
things actually happen.

In backward conditioning, when the USs are presented shortly 
before the CS onsets, the contingency between CS onset and the 
US is also retrospective, not prospective. Knowing the time at 
which a CS is expected to occur tells one the earlier time at which 
a US may be expected to occur. Rescorla called attention to the 
importance of distinguishing between prospective contingency 
and retrospective contingency in Pavlovian conditioning (Q1). In 
1968, it had not been demonstrated that rats learn the retrospective 
contingencies in a Pavlovian conditioning protocol, as well as the 
prospective ones, although Rescorla clearly suspected that they 
did. It has subsequently been demonstrated that they do (Matzel, 
Held, & Miller, 1988). Thus, forward pairing of the CS and the US 
is no longer part of a knowledgeable researcher’s definition of 
Pavlovian conditioning (cf Q1). Nonetheless, it remains rare to see 
this distinction made in contemporary theoretical treatments of 
conditioning (cf Dayan & Berridge, 2014; Schultz, 2015). Rescorla 
was far ahead of his time in his recognition of important distinctions. 
The prospective/retrospective distinction is fundamental to his 
insight that temporal contingency is about the information that an 
event provides or fails to provide about at what remove in time other 
events occur.

The Pavlovian phase of training. Returning to Rescorla’s (1968) 
methods: When the rats had learned to press the lever steadily, 
the lever was removed and Pavlovian conditioning began. The 
CSs were 2-minute tones. Their onsets were scheduled by a 
Poisson process with a rate parameter, 𝜆toneOn, of 0.125 tone 
onset per minute. Thus, the average inter-trial interval, μ, was 
μ = 1/𝜆toneOn = 1/0.125min-1 = 8 minutes. Because the distribution of 
intertrial intervals was exponential, many intertrial intervals were 
much shorter than 8 minutes, while some were much longer. Because 
the exponential has a flat hazard function, when a tone went off, it 
was impossible to predict the time at which it would come back on. 
The offset of the tone provided no information about its next onset 
time; every future moment was as likely as any other.

The shocks were also scheduled by two Poisson processes. 
One ran during the CSs; the other during the USs. The two rate 
parameters, 𝜆(US|CS) and 𝜆(US|~CS) ≡ 𝜆(US|ITI), varied between 
groups from as low as 0 for one group to as high as 0.125 shocks 
per minute for some others. Again—and Rescorla laid particular 
stress on this—when the shock rates during the CS and during 
the intertrial intervals were the same, that is, when 𝜆(US|CS) = 
𝜆(US|~CS), the “probability”1 that a shock would occur at any moment 
was the same at every moment. I put this in italics because theorists 

1 ‘probability’ is the word Rescorla used. He should have written hazard. A proba-
bility cannot be greater than 1, whereas a hazard may rise to infinity, as it does, 
for example, in the Gaussian hazard function, and in many others. A hazard is not 
a probability density either, because a probability density is the value at one point 
in a probability distribution with continuous support. A probability distribution, 
whether discrete or continuous, must sum or integrate to 1. Hazard functions do 
not. One could replace ‘probability’ with ‘likelihood’ because likelihoods are like 
hazards in that they live on the interval [0 ∞]. However, the support for a likelihood 
function is a distribution’s parameter vector; whereas the hazard function takes as 
its argument the support for the distribution itself. This degree of sophistication 
about mathematical statistics was rare among students of associative learning in 
the 1960s, myself included. Moving into the territory where Rescorla’s insights 
should have pointed us in 1972 would have required our mastering aspects of ma-
thematical statistics that few of us had been taught.

https://doi.org/10.5093/rhp2021a3
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have ignored this fundamentally important fact for more than half 
a century.

The restoration phase. After several sessions of Pavlovian fear 
conditioning, the levers were returned to the boxes and the shocks 
ceased, never to occur again. For two sessions, the rats simply 
pressed the levers to again obtain food on the same VI schedule 
as in initial training. After these two restorative sessions with no 
tones, there were 6 test sessions during which the tones sounded at 
unpredictable intervals, 4 such tones per session. Rescorla measured 
the extent to which the rats had learned to fear shock during the CSs 
by the ratio between the rate at which they pressed the lever during 
a tone and the sum of that rate and the rate at which they pressed 
during the flanking intertrial intervals. When there is no behavioral 
evidence of fear, this ratio is .5; when the rat freezes completely 
throughout each tone, this ratio is 0.

The test phase. The 6 test sessions were extinction sessions, 
because the tones no longer predicted shock. The rats were 
expected to gradually lose their fearful reaction to the tone over 
days, as indeed they did—note the rise toward 0.5 in the curves 
plotted in Figure 1. That, however, is not what was revolutionary 
about these results. What was revolutionary was that the more 
closely the rate of shock during the intertrial intervals approached 
the rate during the CSs, the less evidence there was that the tone 
instilled fear, even though the pairings of tone and shock were 
identical in every group within each panel! The shocks during CSs 
not only occurred at the same rates in different groups within a 
panel, they occurred at exactly the same times, and likewise for the 
shocks that occurred during the inter-trial intervals. The rats in 
the groups for which the two rates were equal (one group in each 
panel) showed no significant evidence of fearing the tone even 
on the first day of testing. Thus, it was not the temporal pairings 
of tone and shock that led the rats to fear the tones, it was the 
contingency between the tones and the shocks, the fact that the 
tones provided information about the temporal distribution of the 
shocks.

Figure 1. Median suppression ratio for each of 10 groups of rats during the 6 successive 
test sessions in which their fear of the previously conditioned tone was measured. For each 
group, the “probability” of a US (shock) during the conditioning phase of the experiment, 
given that the tone was present, is at the top of the panel in which the results from that 
group are plotted. The conditional “probability” of a US given that the tone was not 
present is given at the left end of the plot for a given group. For explanation of the scare 
quotes on ‘probability’, see text and Figure 2. Redrawn from Figure 3 on p. 4 of (Rescorla, 
1968) by permission of the publisher.

The misleading description of the probabilities. The results in Figure 
1 are justly famous because they revolutionized thinking about 
associative learning. However, they were—and still usually are—
presented in a misleading way. What varied in this experiment was 
not the probability of reinforcement given CS or ~CS; what varied 
were the rates of reinforcement. One is invited to believe that the 
P(US|CS)’s at the tops of the panels denote the relative frequency with 
which a US occurred during a tone. But that is not in fact the quantities 
Rescorla varied. The quantities he varied were the probabilities 
that one or more USs occurred during a tone or during a CS. This is a 
necessary consequence of the fact that the US-scheduling processes 
were Poisson. During some CSs, there were as many as 3 USs and 
during some ~CSs (intertrial intervals) there were more than 3, while 
during others, there were none. Put more formally, the P(US}CS) = 0.4 
above the upper left panel in Figure 1 should be written P(nUS>0|CS) = 
.4, and likewise for all the other conditional probabilities, both in the 
figure and in Rescorla’s text.

I could write a separate paper on what I think explains the fact 
that Rescorla chose to present the data in terms of probability. 
I think part of the story was that he correctly judged that most of 
the intended readers were more comfortable with probabilities 
than with rates. Then, and even now, the contingencies in Pavlovian 
conditioning protocols are almost without exception specified as 
Bernoulli probabilities. This practice both encourages and reflects 
the view that in some sense contingency reduces to conditional 
probability (cf Schultz, 2015). That is not the case, as subsequent 
efforts soon showed (Hallam, Grahame, & Miller, 1992; Hammond, 
1980; Hammond & Paynter, 1983). The fact that, generally speaking, 
conditional probabilities cannot be converted to contingencies is 
obliquely implied by the final sentence in Q7. It suggests that Rescorla 
had tried his hand at making the conversion and failed.

I know that Bob was aware of what I have just pointed out 
about what should have been written above the panels, because 
once during the years when we were colleagues at Penn, we had 
roughly the following conversation: It began by my asking, “In your 
1968 experiment and in your paper with Wagner, you write only of 
the probability of reinforcement during the CS and during the ITI. 
However, you scheduled shocks with a Poisson process, right? And 
your CSs lasted 2 minutes, right? Therefore, it must be the case that 
during some CSs there were not one but two shocks. And, indeed, 
for a few CSs not one but three shocks, right? So, when you speak 
of the probability of reinforcement what you really refer to is the 
probability of one or more reinforcements, right?” Bob smiled broadly 
if somewhat sheepishly and replied, “Right.” His broad but sheepish 
smile indicated to me that we both understood that ‘probability of 
reinforcement’, P(US|CS), does not mean the same thing as ‘probability 
of one or more reinforcements’, that is, P(US|CS) ≠ P(nUS>0|CS). 

Rescorla & Wagner (1972)
Rescorla understood that the rats in the groups where the rates 

of shock were the same during the tones as during the intertrial 
intervals became conditioned to the experimental chamber rather 
than to the tone. Anyone who does this experiment will observe 
that the rats in this condition freeze when put in the chamber at 
the start of each session. At almost the same time, Kamin published 
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his blocking and overshadowing experiments (Kamin, 1967; Kamin, 
1969; Kamin, 1969) and Wagner and his collaborators published their 
relative validity experiment (Wagner, Logan, Haberlandt, & Price, 
1968). These Pavlovian conditioning experiments with rats all showed 
that what a subject had already learned—in the blocking protocol—
or was contemporaneously learning—in the overshadowing and 
relative validity protocols—strongly interacted with what it learned 
about a target CS. Earlier in the same decade, Reynolds (1961) showed 
what was later recognized as overshadowing in pigeons in a operant 
protocol. These stimulus-interaction findings in Pavlovian and operant 
experiments were revolutionary. Previous theories of associative 
learning had treated each CS-US association as an independently 
developing connection.

The theoretical problem was how to model/understand these 
interactions. In Pavlovian conditioning, this has come to be called the 
cue competition problem. In the operant, reinforcement learning and 
artificial intelligence literatures, it is called the assignment of credit 
problem (Dayan & Berridge, 2014; Fu & Anderson, 2008; Gallistel, et 
al, 2019; Minsky, 1961; Staddon & Zhang, 1991; Sutton, 1984).

Rescorla and Wagner (1972) joined forces to publish what continues 
to be a hugely influential solution. The solution is their differential 

 
equation where ΔAi is the change in associative strength of the ith 
CS on a given trial; αi,US is the associability parameter (aka the rate 
of learning parameter);  is the sum over all the associations 
between the CSs active on the given trial and the US; and ΛUS is an 
upper limit on that sum. The key idea is that the competition between 
CSs for associative strength is mediated by the upper limit on net 
associative strength (ΛUS).

In Rescorla and Wagner’s thinking, the association between a 
CS and a US was a proxy for how well a CS predicted the US. If a CS 
predicts the US with probability 1, there is no room for any further 
increase in the predictability of that US on a trial on which that 
maximally predictive CS occurs. As Hullians (however temporary in 
Bob’s case), they could not postulate that the brain contained a symbol 
for a probability. However, if one thinks in terms of synaptic plasticity, 
as Wagner certainly was thinking, then it is reasonable to imagine 
that when a single presynaptic spike suffices to fire the postsynaptic 
neuron, then further increases in synaptic conductance will have 
no behavioral consequences. Thus, in postulating an upper limit on 
net associative strength, they were thinking in terms of strength of 
prediction. Let A1 be the strength of the CS1-US association, where 
CS1 is a CS that has repeatedly been paired with the US. If A1=ΛUS, 
then . In that case, if a new CS2 is introduced, as 
in a blocking protocol, ΔA2=0. Therefore, the strength of the CS2–US 
association never grows. Thus, blocking is immediately explained by 
this formula. A similar but more complex analysis yields Wagner et 
al’s (1968) relative validity results.

Rescorla and Wagner finished with an analysis of Rescorla’s (1968) 
results. The intuition underlying their analysis was that in the truly 
random control, where USs occurred during the ~CSs (the intertrial 

intervals), the strength of the association between the context (the 
only CS present during the intertrial intervals) and the shock grows 
faster than the strength of the association between the tone and the 
shock. If that is so, then the association to the context will crowd 
out the association to the tone; the context-US will take up all the 
possible net associative strength. This intuition accounts for the 
enduring popularity of the theory. The intuition, however, overlooks 
three conceptual difficulties that arise when one attempts to apply 
Equation (1) to Rescorla (1968).

One difficulty is the number of free parameters. The subscripts 
on αi,US indicate that associability (rate of learning) may be unique to 
each different combination of a CS and a US. That means the theory 
has as many free parameters as there are CS-US combinations. Free 
parameters are parameters with unknown values. Their values must 
be estimated from the data when assessing whether a formula like 
Equation (1)—aka a model—explains the results of an experiment. 
The more free parameters a model has, the more data it can “predict.” 
‘Predict’ is in scare quotes because when the parameters have to 
be estimated from the results of each new experiment in order to 
make the model predict those results, the model does not predict 
those results. von Neumann famously said, “With 4 parameters I can 
fit an elephant, with 5, I can make it wiggle its trunk.” Statisticians 
understand that free parameters give a model room to wiggle. With 
enough of them, a model can be made to predict random data, which 
is to say all possible results (Rissanen, 1989, 1999).

In applying their model of associative learning to their respective 
experimental results, Rescorla and Wagner took advantage of the 
wiggle room: They assumed one set of values in order to explain 
Rescorla’s (1968) results and a very different set of values to explain 
the results obtained by Wagner et al (1968)—see Gallistel (1990, pp 
412-417). They made these very different parametric assumptions 
despite the fact that both experiments used tone and light CSs lasting 
2 or three minutes in conditioned emotional response protocols with 
rat subjects.

The biggest problem with their paper from my perspective, however, 
is with the treatment of time and contingency. In his paper with Wagner, 
Rescorla temporarily abandoned the insights he had achieved while still 
a graduate student. Their paper does not mention contingency; it does 
not mention information; time does not appear in Equation (1); and 
their treatment of time led the field further into the wilderness.

For me the greatest element of the tragedy is that in trying to make 
their theory as close as possible to the Hullian theory that preceded 
it, they encouraged the field of animal learning and neurobiologists 
interested in the physical basis of memory to believe that their theory 
rescued Hullian theory. As a result, the neurobiological community 
continues to use Hull’s theory as the basis for their attempts to 
discover the engram, the physical basis of memory. The use of this 
theory as the conceptual foundation for the search for the engram 
explains why we have still not found it (Gallistel, 2020).

Rescorla and Wagner made a nod toward the nascent movement 
toward a cognitive psychology, a psychology in which expectations 
were legitimate postulates. “The central notion suggested here can 
also be phrased in somewhat more cognitive terms. ....organisms 
only learn when events violate their expectations. Certain 
expectations are built up about the event following a stimulus 
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complex; expectations initiated by that complex and its component 
stimuli are then only modified when consequent events disagree 
with the composite expectation.” --.p. 75. However, they then 
turned to Hull’s theory, with which Wagner was more comfortable2. 
In the paragraph that introduced Equation (1), they wrote “...one 
way to look at the central notion of this theory is as a modification 
of Hull’s account of the growth of sHr. Similarly, one way to view the 
particular formalization to be proposed is as a modification of the 
mathematical model most closely related to the Hullian theory, the 
linear model” -p. 75 

In Hullian theory, there are no memories as memories are 
intuitively understood (facts stored in the brain). A fortiori, there 
are no records in memory of the many abstract facts about the 
experienced world that are only very obliquely related to sensory 
experience—facts such as times, distances, directions, durations, 
numerosities and probabilities. There is no information in the mind in 
Hull’s theory; there are only conditioned reflexes. The H in sHr stands 
for habit and ‘habit’ is another name for conditioned reflexes (Hull, 
1930). Hull’s concept of a habit is the ancestor of what contemporary 
reinforcement learning theorists call model-free learning.

In the Hullian theory of memory, there are only the associative 
bonds that enable stimuli (s) to excite or inhibit responses (r), just 
as in the neurobiologists’ conception of memory, there are only the 
plastic synapses that enable a presynaptic neuron to excite or inhibit 
a postsynaptic neuron. This was the message that Hull intended 
neurobiologists to take from his work. Unlike Skinner, who thought 
psychologists should leave neurobiology to the neurobiologists, Hull 
wanted to make his theory of learning neurobiologically plausible. 
Hull also wanted a radically empiricist theory, a theory that honors 
the commitment in medieval philosophy to Aristotle’s principle 
that “there is nothing in the mind that was not first in the senses” 
(Acquinas, 1256-1259, q. 2, a. 3, arg 19).

The commitments to plastic synapses and to a radical empiricism 
stand in profound antagonism to Rescorla’s insight that temporal 
information and contingency drive associative learning, not temporal 
pairing. They do so because time of occurrence, duration, information 
and contingency are on the long list of intangible abstractions that 
inform everyday behavior (Gallistel, 2020). They are numerically 
representable facts acquired from previous experience and stored 
in memory. The problem for the radical empiricist is that there are 
no sensory receptors for these aspects of the physical world. If time, 
information and contingency get into the mind, they do not get there 
by the route that Aristotle, the peripatetic philosophers, Acquinas, 
John Locke and Clark Hull thought was the only possible route. Also, 
these abstract quantities that inform our remembered experiences 
are not the sort of thing that can be encoded in plastic synapses—
unless the mechanisms that make synapses plastic have heretofore 
unpostulated properties. Indeed, the suggestion that synapses might 
encode anything is not to be found in neurobiological reviews of 
progress in the search for the engram (cf Poo et al., 2016; Tomonori, 
Duszkiewicz, & Morris, 2013).

2 I know this because I took Wagner’s advanced course in learning while a graduate 
student at Yale in 1965.

Time and the NoUS in Rescorla-Wagner
In Pavlovian protocols, the target CSs (transient tones, lights, 

noises, vibrations) are always presented in a context, that is, in a 
chamber into which the subject is placed at the beginning of each 
experimental session. As Rescorla realized in consequence of his 1968 
experiment, this context is itself a CS; the subjects learn that they 
get food or water or shock (the usual reinforcement suspects) in that 
box. Therefore, in the traditional “experimental” condition, where the 
shocks occur only during the target CS (or, more typically, only at the 
end of it), both the target CS and the box CS are present. However, as 
Rescorla’s experiment showed, the association between the box and 
shock is also critical to the behavior that develops in response to the 
tone CS. In thinking about how to bring the box into play—something 
no one had previously thought about—they had to consider both the 
relative frequencies of the tone+box trials and the box-alone trials.

Until Rescorla and Wagner tried to apply their theory to Rescorla’s 
(1968) results, I think it is fair to say that no one had devoted much 
thought to what constitutes a trial. The events that constituted trials 
in the minds of researchers up to that time were always demarcated 
by observable events acting on sensory receptors. A trial was taken to 
be the interval between the onset and offset of whatever stimulus was 
used as the CS (or during the interval in which the trace left by the CS 
in the nervous system faded away). 

Given what had always defined a trial, it would seem simple 
to say what constituted a box-alone trial: A tone+box trial began 
when the tone came on and ended when it went off; therefore, one 
would think that a box-alone trial began when the tone went off and 
ended when it came on. One might also think that in both cases, the 
probability of a shock during a trial was the total number of shocks 
that occurred during trials of that kind divided by the number of 
trials of that kind. 

There were 12 CSs in each of the 5 Pavlovian conditioning sessions, 
so 60 CS trials. Because CS and ~CS trials (tone+box and box-alone 
trials) alternate, there were also 60 ~CS trials (intertrial intervals). The 
average number of shocks that occurred during each trial is the shock 
rate during that kind of trial (shocks/minute) times the cumulative 
duration of those trials. In the P(US|CS) = P(US|~CS)= 0.4 group, the 
shock rate was 0.26 shocks/minute. That rate times 60 gives 31.2 
shocks in 60 CS trials for a probability of shock on a CS trial of .52. 
Notice that this probability does not agree with P(US|CS) = 0.4. Why 
not? Because, as already mentioned, some CS trials had not 1 but 2 
shocks, and others even had 3. For every CS trial that got more than 
the average number of shocks there had to be other trials that got 
less than the average. It’s the 60% of the trials that got 0 shocks that 
explain why P(US|CS) equals only 0.4.

The cumulative duration of the box-alone trials was 8x60 = 
480 minutes. That cumulative duration multiplied by 0.26 shocks/
minute gives 124.8 shocks. That number of shocks divided by the 
60 box-alone trials yields a shock probability on box-alone trials of 
more than 2. Houston, we’ve got a problem: Probabilities cannot 
be more than 1. Again, the explanation is that more than one shock 
occurred on the great majority of box-alone trials (Figure 2); there 
was a 30% chance of a subject receiving more than 5 shocks during 
at least one of the 60 intertrial intervals. Less than 13% of the those 
intervals were shock free.
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Figure 2. The distribution of the number of shocks received during box-alone trials for 
subjects in one of the Rescorla’s (1968) experiment when the box-alone trials are taken to 
be the observable intertrial intervals between CS offs and CS ons.

Clearly, we cannot compute the probability of a shock on a box-
alone trial in the usual way if we define a trial in the usual way, that 
is, as an interval demarcated by observable events. In fact, the way 
one calculates probability in a truly random protocol cannot be done 
the usual way at all, as witness the discrepancies between Rescorla’s 
(1968) probabilities in Figure 1 and the results just obtained with 
the usual approach. To get Rescorla’s probabilities, one has to first 
compute the rates at which his Poisson processes scheduled shocks, 
then use the Poisson distribution to compute the probability of 0 USs 
given both the shock rates (USs/unit time) and the duration(s) of the 
trials in question.

Critically, both the computation of the rate and the Poisson part of 
the computation require one to take into account the duration of the 
trial in question. Traditionally, researchers did not take trial duration 
into account when computing reinforcement probability—for the 
simple reason that it is not clear how to do so. Probabilities do not 
have units; whereas rates and durations have temporal units. How is 
one going to get a unitless quantity on the left side of a formula when 
the quantities on the right side have units that do not cancel?

To make their theory work in explaining Rescorla’s (1968) results, 
Rescorla and Wagner had to find a way of computing P(US) during 
box-alone trials that made it comparable to P(US) during tone+box 
trials. Here’s what they did:

“In order to exemplify the application of the model to [the Rescorla’s 
1968 results], the experimental session was taken to be divisible into 
time segments the length of the CS duration. Each segment containing 
the CS is thus treated as a [tone+box] “trial” and each segment not 
containing the [tone] as a [box-alone] “trial.”’ (Rescorla & Wagner, 
1972, -p. 88; scare quotes in the original)

Decades ago when first I read the just quoted paragraph, I muttered 
to myself, “How crazy is that?!” I took their scare quotes to indicate 
they knew it was pretty crazy.

The first problem is that their description of what they did cannot 
be both complete and accurate. The exponential distribution of the 
intertrial intervals makes it impossible to carve the time line into a 
sequence of contiguous 2-minute intervals such that some contain 
only the CS and the others only the ITIs. There must be many 2-minute 
intervals that contain some part of a CS and some part of an ITI. In 

fact, there were a fair number of intertrial intervals that contained 
CS segments at both ends because they were much shorter than 2 
minutes. To be complete, their description would have to say what 
they did with these mixed intervals. I never thought to ask Bob that 
question.

The second problem was that they posited imaginary events 
during these imaginary intervals. Rescorla’s Poisson scheduling of 
shocks made it impossible in principle to say when the postulated 
events should be imagined to occur. The imaginary events in question 
are sometimes called NoUSs. A NoUS is the failure of a US to occur at 
the time it is expected.

When USs are scheduled by a Poisson process, there is no such 
time, as Rescorla stressed in 1968. A neurobiological neo-Hullian 
has to believe that NoUSs are physical causes in the brain, because 
they are assumed to cause an enduring depotentiation of synaptic 
conductances. Physical realized events are localized in time. The 
question is, How can a NoUS cause a change in synaptic conductance 
at a specifiable time in those cases where it is in principle impossible 
to say when a reinforcement is expected to occur hence impossible to 
say when a NoUS has occurred?

There was, however, a third problem—the problem at the core of 
the tragedy. Rescorla and Wagner were trying to salvage the most 
conceptually unproblematic kind of temporal pairing, temporal 
coincidence, as the causal event in associative learning. Defining 
temporal pairing as temporal coincidence has the advantage that 
one does not have to specify a critical interval within which the CS 
and US—or the response and the reinforcement—must both occur 
in order to become associated (Gluck & Thompson, 1987; Hawkins 
& Kandel, 1984). The critical-interval approach to temporal pairing 
is conceptually problematic because the field has never been able 
to determine from experiment what that critical interval might be 
(Rescorla, 1972). Gallistel and Gibbon (2000) explain that this failure 
is traceable to the fact that there is no critical interval (Gibbon & 
Balsam, 1981). Many years later, Rescorla lamented the failure 
of psychologists to understand what he had written back in 1967 
and 1968: “The insufficiency of contiguity for producing Pavlovian 
conditioning can be illustrated by results that have been available 
for almost 20 years (e.g., Rescorla, 1968) but that have apparently 
failed to be integrated into the view of conditioning held by many 
psychologists.” -p.3).

Part of the tragedy is that Rescorla, when teamed with Wagner, 
tried to build a model based on temporal coincidence even though: 
1) Rescorla had explained at length in his 1967 Psychological Review 
paper why this was unlikely to be a successful approach given what 
was already known about inhibitory conditioning. 2) He had shown 
in his 1968 experimental paper that it was contingency not temporal 
pairing that drives the associative learning in excitatory Pavlovian 
conditioning. 3) They were trying to salvage this idea by imagining 
trials that had no basis in observable fact, which is why they put scare 
quotes on ‘trials’.

They were forced into this line of theorizing because contingencies 
when defined in terms of conditional probabilities cannot be computed 
without defining timeless trials. A trial has always been an interval 
whose duration need not be considered, during which a CSs and USs 
either do or do not occur. If they both occur within the trial, then an 
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associative bond is strengthened. If the CS occurs and the US does not, 
whatever bond may exist between them is weakened. When trials 
are defined in terms of observable events this may not be a problem, 
at least for the theory of excitatory conditioning. However, Rescorla 
(1967) was not the first to point out that it has always been a problem 
when it comes to inhibitory conditioning and extinction (Gleitman, 
Nachmias, & Neisser, 1954; Kimble, 1961, 318-329).

When theorists allow themselves to imagine trials that have 
no basis in observable experience, during which imagined events 
also occur, conceptual problems arise. They arise from the failure 
to deal with time itself—that philosophically puzzling aspect of our 
remembered experience that does not come into the brain through 
the senses. The two problems that arise are: 1) How long do the 
imagined trials last? 2) When during the imagined intervals do the 
imagined events occur? The failures of CSs to occur and the failures 
of USs to occur are both among the events that are imagined to 
occur. These imagined failures are posited to cause changes at the 
synaptic level in the brain, so there must be some time at which 
they have this physical effect, some specifiable time at which the 
synapses change.

Rescorla and Wagner did not address either question, although 
both were aware that they lurked. Wagner later tried to extend the 
theory to cope with them (Vogel, Ponce, & Wagner, 2019; Wagner, 
1981). The resulting theory became so rococo that Rescorla no longer 
wanted to follow where Wagner led. He remarked in a seminar that 
Wagner’s theory was the only theory he knew that was harder to 
understand and remember than the data it explained. In that same 
seminar, I trolled Bob about the imagined trials and the imagined 
events. He did not bridle at my trolling; he freely acknowledged that 
they were problematic. Indeed, in the same year as the Rescorla-
Wagner paper appeared, Rescorla published another chapter, which is 
unfortunately much less often cited, in which he wrote, “...to be sure, 
both sequential and temporal variables are important in conditioning 
and will demand adequate theoretical treatment. But the present 
data...do not serve as a solid base for expansion of the theory [to 
include an explicit treatment of the effects of temporal variables].” 
(Rescorla, 1972, p. 40)

Bob and I were on excellent collegial terms. I believe his reluctance 
to make further theoretical efforts, despite the success of the 
Rescorla-Wagner theory, arose partly from his inability to see a way 
to solve the problems posed by the roles of time and information in 
conditioning and the relations between events separated in time, 
roles he continued to stress (Rescorla, 1988).

The Enduring Problem with Imagined Events, States and Stimuli
Broadly speaking, the field has remained more comfortable 

with imagined intervals, imagined states and imagined stimuli 
than Rescorla was. They play a prominent role in contemporary 
theorizing (see Dayan & Berridge, 2014; Gershman, Moustafa, 
& Ludvig, 2014; Kehoe, Ludvig, & Sutton, 2013; Ludvig, Sutton, & 
Kehoe, 2008; Ludvig, Sutton, & Kehoe, 2012; see Luzardo, Alonso 
& Mondragón, 2017 for a critical review; for a sampling of the role 
of imagined trials, states and temporal stimuli, see Niv, Daw, & 
Dayan, 2005;Niv, Daw, Joel, & Dayan, 2007; Schultz, 2015; Schultz, 
Dayan, & Montague, 1997; Starkweather, Babayan, Uchida, & 

Gershman, 2017; Williams, Todd, Chubala, & Ludvig, 2017). Most 
of this theorizing is neurobiologically oriented. Like Hull, these 
theorists care deeply about neurobiological interpretations of their 
hypothetical constructs; they often spend more time reviewing the 
neurobiological data than the behavioral data. 

Contemporary computational cognitive neuroscientists postulate 
sequences for brain states and temporal micro-stimuli for the 
same reasons that Rescorla and Wagner did: the neurobiological 
representation of these states create something to which a scalar 
quantity may be associated/connected. Sometimes that quantity is 
assumed to be an associative strength. In reinforcement learning, 
it is a “value” (Niv, 2009). In temporal difference learning, it is a 
prediction error. This theorizing is a continuation of Hull’s thinking, 
couched in more cognitive language. The roles played by the value 
of a state in reinforcement learning theories and by the prediction 
error in temporal difference learning are similar to the role played by 
anticipatory goal stimuli (sg) in Hull’s theory (Hull, 1952). As in Hull’s 
theory, values and prediction errors work their way back through a 
chain of states or temporal micro-stimuli. In Hull, the elements in 
the chain are the rg’s, whose sensory consequences are the sg’s (faint 
copies of stimuli experienced in the goal state). Value and prediction 
error work their way back through the chain trial by trial, just as do 
the rg’s in Hull’s theory, so as to guide earlier responding in a chain of 
actions, just as do the sg’s in Hull’s theory. Psychologists went down 
that theoretical path almost a century ago.

The problem with this theorizing is not that it postulates 
unobserved entities in the brain. That was Skinner’s problem; as a 
logical positivist, he hated hypothetical constructs (Skinner, 1950). 
Logical positivism died as a guide to how to do science because the 
history of science shows that postulating entities not yet observed is 
essential in any reductionist approach. The gene is a classic example 
of a hypothetical construct. If the geneticists had not posited its 
existence, molecular biology would not exist. Particles are another 
example; their postulation and subsequent discovery has played a 
fundamental role in physics over the last 100+ years.

The problem with this line of theorizing is that it has been tried 
and failed. It has failed because it has not formulated a coherent 
theory of how time and information are represented in brains. The 
following quote from a 100+ page review by a leading researcher on 
the neurobiology of learning is indicative of contemporary thinking 
(Schultz, 2015, Section 3, p. 17):

“The formal treatment of surprise in conditioning 
employs the concept of prediction error. A reward 
prediction error PE is the difference between 
received reward λ and reward prediction V in trial t 
 
		  PE(t) = λ(t) − V(t)	  	 (1)

This formal definition of “error” extends beyond the 
colloquial meaning of inaccurate behavior. Prediction 
errors occur whenever Equation 1 applies, irrespective of 
whether they simply occur during behavioral learning or 
are actually being used for learning. Animal learning theory 
aims to explain the role of contingency in conditioning by 
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formalizing how prediction errors update reward predictions 
from previously experienced rewards (460). The new 
prediction V for trial t+1 derives from the current prediction 
V(t) and the prediction error PE(t) weighted by learning rate 
 
		    V(t + 1) = V(t) + α ∗ PE(t) 		  (2)

Note that V captures the sum of predictions if several stimuli 
are present.”

The enduring influence of the Rescorla-Wagner paper—citation 
460 in the quote—is clear. I note in particular that t refers to trial, 
not time. Schultz treats contiguity and contingency as equally 
important factors in learning, but he fails to define either of them. 
The propagation for half a century of conceptual errors that Rescorla 
clearly recognized in 1967 is made possible by the role that various 
circumlocutions for imaginary trials (aka states or steps) play in 
temporal difference learning and reinforcement learning.

Gibbon, Berryman and Thompson (1974) reviewed the measures 
of contingency in conventional (frequentist) statistics that might be 
applied to conditioning protocols. They stressed that none of them 
could be applied to instrumental/operant protocols. There is some 
irony here because temporal difference theories and reinforcement 
learning models generally attempt to explain results from those 
protocols (e.g., Niv, et al 2005).

A contingency table contains the four joint “events” that can be 
regarded as in some sense occurring or not occurring in a protocol 
with objectively definable trials. On a trial demarcated by observable 
events, the CS and US may both occur, they may both fail to occur, 
the CS may occur and not the US, or the US may occur and not the 
CS. The statistic most often mentioned in the more recent literature 
is one of the ones discussed by Gibbon et al (1974)

∆p=p(US|CS)-p(US|~CS)

I believe the problem with ∆p was already apparent to Rescorla. 
I believe it’s why he did not offer a formulation of contingency 
in 1967 or at any later time. Be that as it may, the problem with 
∆p soon became apparent to experimentalists who attempted to 
apply Rescorla’s theoretical and empirical demonstrations of the 
importance of contingency to autoshaping and operant protocols 
(Gibbon, 1981; Gibbon et al., 1974; Gibbon, Locurto, & Terrace, 1975; 
Hallam et al., 1992; Hammond, 1980). It is not, however, apparent 
to many contemporary researchers, as witness the following quote 
from an anonymous reviewer writing in 2019:

“If the total time is divided into small enough equivalent units 
(the length of the trial is often used), all 2x2 contingency table 
values are perfectly measurable individually.” 

I believe this to be a common belief. There are three reasons why 
it is a false belief: First, to compute ∆p one has to count events that 
didn’t occur, namely, the ~CS’s. I leave it to the reader to try to count 
how many ~CS’s there were in Rescorla’s (1968) protocol; Rescorla 
was not so foolish as to try.

The second problem is subtler. It highlights the conceptual 
problems that follow from specifying trials and states that have no 

specified duration and no basis in observable fact. Suppose, we allow 
the durations of our imagined trials to become arbitrarily short. The 
anonymous reviewer just quoted thinks this solves the ∆p problem. 
It doesn’t. In fact, it highlights the problem.

Suppose that we divide the time line in Rescorla’s (1968) protocols 
into some number of imagined contiguous intervals (imagined 
“trials”) for the purpose of computing a ∆p. Let a be the count of 
the intervals that contain a CS and a US, b be the count of intervals 
that contain a ~CS and a US, c be the count of the intervals that 
contain a CS and a ~US, and d the count of the intervals that contain 
a ~CS and a ~US. These are the mutually exclusive and exhaustive 
possibilities that go into a timeless binary contingency table. Then: 
 
	 △p = p(US|CS) – p(US|~CS) = a/(a+c) – b/(b+d)

Consider next the consequences of allowing the durations of the 
imagined trials to become arbitrarily short. Rescorla’s USs lasted 
only 0.5 a second. He could have made them much shorter still; a 
rat fears a nasty shock no matter how short, because what it fears 
is the onset of the pain in its paws. That’s a point event. Therefore, 
a and b, which are, respectively, the count of the intervals in which 
a US and a CS both appear and the count of the intervals in which 
a ~CS and a US both appear, do not change; they always add up to 
the number of USs that actually occurred. The problem is that c and 
d, which are, respectively, the count of the intervals in which a CS 
and a ~US appear and the count of the intervals in which a ~CS and 
a ~US appear, go to infinity as the durations of our imaginary trials 
become infinitesimal. These latter two counts, the ones that go to 
infinity, appear in the denominators of the conditional probabilities 
in the formula for ∆p. Therefore, both conditional probabilities go to 
0 as the durations of our imagined trials go to 0—and so does their 
difference, ∆p.

In short, the duration of the imaginary interval within which 
events are counted determines the value of ∆p. When the duration 
is left unspecified or specified in an arbitrary way, then either ∆p 
is unspecified or its value is arbitrarily determined by the arbitrary 
choice of a duration for the imagined trials, as those experimentalis 
who attempted to follow Rescorla’s lead (Hallam et al., 1992; 
Hammond, 1980).

I surmise that Rescorla knew this as early as 1967 when he 
was careful to write than he did not attempt to specify a formula 
for temporal contingency given probabilities. The tragedy is that so 
few others pondered what such a formula might look like and, if 
they could not devise one, what other approaches there might be to 
quantifying temporal contingency, given that the atemporal formula 
cannot be made to work.

Available Information, Transmitted Information and Temporal 
Contingency

When it is realized that numerosities (event counts), durations, 
times of occurrence and probability distributions are represented 
in brains, it is not hard to formulate a mathematically explicit 
parameter-free model that explains the cue competition phenomena 
that the Rescorla Wagner model is erroneously thought to explain 
(Gallistel, 1990). The key is to focus on rates (numerosities divided 
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by durations) not probabilities (subset numerosities divided 
by superset numerosities). A parameter-free matrix equation, 
 
 

							  
takes the place of the Rescorla-Wagner formula (Equation 1). 
The inputs to this formula are counts of observable events and 
measurable durations (Gallistel & Gibbon, 2000; Wilkes & Gallistel, 
2016, 2017). These actually observed quantities determine λr, a row 
vector whose elements are the raw estimates of reinforcement rates 
(cumulative counts of USs during a CS divided by the cumulative 
duration of that CS. Different observed states of the world are 
defined by the different combinations of CSs that occur in a 
protocol. The ratios of the cumulative durations of those observed 
states determine the entries in T, the temporal coefficient matrix. 
The product of the raw rate vector and the inverse of the temporal 
coefficient matrix gives the true (corrected) rates of reinforcement 
to be ascribed to the different CSs (e.g., the tone+box state and 
the box-alone state). As explained below, the rates that figure in 
this simple formula determine the information that the various 
the observed changes in state transmit to the subjects. Because it 
has no free parameters and no imagined states, this model has no 
wiggle room.

It is also not hard to formulate an information-theoretic measure 
of temporal contingency based only on measurable intervals 
and the counts of observable events (Balsam, Drew, & Gallistel, 
2010; Gallistel,et al, 2019). The information available to a subject 
placed in a box where shocks occur at random is the entropy, 
HS, of the exponential distribution of the inter-shock intervals: 
 

 
where 𝜆� is the rate parameter of the exponential distribution of inter-
shock intervals.

The formula for computing the entropy of an exponential 
distribution from its rate parameter (Equation 3) must be used with 
caution, because rates have units, as do means and variances. The 
choice of a temporal unit determines the value for entropy that 
one obtains from the formula. Unlike with means and variances, 
however, the temporal unit does not attach to HS, the value for the 
entropy. The failure of the units on the right of Equation 3 to appear 
on the left makes it is easy to overlook this important fact. Moreover, 
for some choices of a temporal unit, Equation (3) yields nonsense. 
For example, if one chooses a time unit such that λS>e, it yields 
negative entropies.

Entropy is always positive because it measures uncertainty, 
and there is no such thing as negative uncertainty. In information 
theory, information and uncertainty are two names for the same 
quantity. That takes some getting used to, because, intuitively, they 
are antithetical. When the unit of time is made arbitrarily small—
in technical language, as it tends to 0—the entropy of a continuous 
distribution like the exponential distribution becomes arbitrarily 
large. This happens for a reason that psychologists should love: the 
upper limit on the uncertainty a subject can have about the value of 
a stochastic variable depends on the number of possible values for 

it that they can distinguish. As that number goes to infinity, so does 
their uncertainty.

Fortunately, for actual subjects, their ability to distinguish 
differences in quantities such as weights, sound intensities, 
brightnesses, numerosities, durations, distances and directions 
is limited. Weber measured some of those limits at the dawn of 
experimental psychology. He found that they scaled with the 
reference quantity. We now know that, for every quantity that the 
mind reckons with, there is a Weber constant, w, such that, for every 
reference quantity, Qr, we must increase or decrease Q by wQr in 
order to find a quantity that a subject can just distinguish as bigger 
or smaller than Qr. Put more simply, the change in a Q required to 
make a just noticeable difference is proportional to Q. The constant 
of proportionality is w, and w is an inverse measure of a subject’s 
ability to resolve differences; the smaller w is, the more differences 
a subject can distinguish within a given range. 

The w’s for duration and numerosity have been repeatedly 
determined. They generally fall in the range 0.1-0.3 for rats, mice, 
pigeons and humans (Gibbon, Malapani, Dale, & Gallistel, 1997). 
Knowing the w for duration and one other very general fact enables 
us to estimate how much uncertainty brains have about the 
quantities on which their computational mechanisms operate. The 
other general fact is that neurobiological measurement mechanisms, 
like all physically realizable measurement mechanisms, have limited 
dynamic range. Therefore, these quantity-sensing mechanisms 
autoscale their sensitivity. By autoscaling their sensitivity they put 
the current Qs within the range to which the measuring mechanism 
is currently sensitive, thereby maximizing the information the 
sensing mechanism delivers to the rest of the brain (Bialek & Rieke, 
1992; Brenner, Bialek, & de Ruyter van Steveninck, 2000; Rieke, 
Warland, de Ruyter van Steveninck, & Bialek, 1997). Quantities that 
are too great or too small—quantities outside the dynamic range—
cannot be measured until the range is again adjusted. Thus, the 
number of distinguishable quantities—the number of recognizable 
differences—tiles the dynamic range. Therefore, this number may be 
estimated from w.

If we assume that subjects in experiments that measure w 
autoscale so as to put Qr in the middle of their dynamic range of the 
mechanism that measure Q, then a Weber fraction of 0.125 implies 
that there are 8 discriminable values for Q below Qr and 8 above it, 
so 16 in all. On the other hand, a subject whose w = .25 can recognize 
only 8 different durations within any given dynamic range. Thus, the 
temporal information available to a subject with w = .125 is 4 bits 
(24 = 16), while the information available to the less discriminating 
subject is 3 bits.

The temporal information available to a subject in the absence 
of an information bearing signal measures the subject’s uncertainty. 
The rats in Rescorla’s truly random control conditions very soon 
knew with certainty that when placed in that box, they were going 
to get shocked at unpredictable intervals. Given what we have 
subsequently learned about the temporal Weber fraction in rodents, 
Rescorla’s rats had between 3 and 4 bits of uncertainty about how 
soon they would get the next shock. For the rats in the truly random 
conditions, CS onsets did nothing to reduce that uncertainty. 
Consider, however, the rats where the CS signaled an increase in the 
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rate of shock. The amount of information transmitted to these rats by 
CS onsets is the difference in their uncertainty about how soon the 
next shock might come in the presence and absence of the tone CSs: 

 
			    
							     

Balsam and Gallistel (2009) call the ratio of the mean inter-shock 
intervals, μbox and μ(tone&box), the informativeness of a protocol, because, 
as shown by the final expression in Equation (4), the log of that ratio 
is the amount of information transmitted by the CSs to the different 
groups of rats in Rescorla’s (1968) experiment.

Informativeness is a unitless quantity, because the time units 
attaching to the means in Equation (4) cancel. This is an instance 
of a more general fact, which makes Shannon’s theory so generally 
useful, even with continuous distributions like the exponential: 
Both the differences in the entropies of continuous distributions 
and their relative entropies are defined—they are computable 
from their parameters—even though the individual entropies are 
not (because the individual entropies become arbitrarily large as 
the time units become arbitrarily small). In the transmission of 
information, it is the differences in entropies that are most often 
important, because the information communicated to a subject 
by a signal (e.g., a tone onset or offset) is the difference between 
the subject’s uncertainty before receiving the signal and their 
uncertainty after receiving it.

Figure 3 plots the degree of suppression that Rescorla (1968) 
observed as a function of the bits of information his CSs conveyed 
about how soon the next shock might occur

Figure 3. Suppression ratio in Rescorla (1968) as a function of the number of bits of 
information the CS transmitted about how soon the next shock would occur. Figure 
courtesy of Peter Balsam, based on data in Figure 1. The numbers by the data points refer 
to the conditions in Figure 1.

In a Pavlovian protocol, a subject’s background level of 
uncertainty is determined by the overall rate of reinforcement 
while in the experimental chamber (total number of reinforcements 
divided by total time in the context). In an excitatory protocol, CS 
onset reduces this uncertainty because it signals an increase in rate, 
and the greater the rate, the lower the entropy of the exponential 

distribution. CS offset increases the subject’s uncertainty because 
it signals a return to the lower background rate. In an inhibitory 
protocol, the roles of CS onset and offset are reversed: CS offset 
signals an increase in the rate of reinforcement, hence a reduction 
in uncertainty, while CS onset signals a return to the contextual rate, 
hence an increase in uncertainty. The contingency is the unsigned 
difference between the uncertainty produced by the higher rate and 
uncertainty produced by the lower rate divided by the background 
uncertainty, which is always the lower rate, hence the higher 
uncertainty. As may be seen in Equation (4), the temporal units 
cancel out, leaving a time-scale invariant indicator of the degree 
of “association” between the CS events and the reinforcement 
events. ‘Association’ is now in scare quotes because it refers to an 
objectively measurable property of the observable events, not to a 
hypothetical construct.

Gallistel, et al (2019) show how to apply the time-scale invariant, 
information-theoretic measure of contingency to operant protocols 
to solve the temporal assignment of credit problem in instrumental/
operant learning/reinforcement learning. The prospective 
contingency between a response and a reinforcement is the difference 
between the entropy of the distribution of waits for reinforcement 
given a response and the distribution given a randomly chosen 
moment in time. The retrospective contingency is the difference 
between the entropy of the distribution of intervals looking back 
in time from a reinforcement to the most recent response and the 
entropy of the distribution looking back from randomly chosen 
moments in time.

In a variable-ratio (VR) protocol, the inter-reinforcement interval is 
a scalar function of the average inter-response interval since the last 
reinforcement. Therefore, the prospective contingency between rate of 
responding and rate of reinforcement is 1; the faster the pigeon pecks, 
the sooner it gets reinforced. In a variable-interval (VI) protocol, by 
contrast, the function relating rate of reinforcement asymptotes at the 
rate determined by the schedule. No matter how fast the pigeon pecks 
during an inter-reinforcement interval, it only gets reinforcement when 
the Poisson process times out. As previously explained, when subjects 
respond fast enough to produce the schedule-determined asymptotic 
rate of reinforcement, the prospective contingency between the 
subject’s rate of responding and the its rate of reinforcement 
becomes unmeasurably small, as does the prospective contingency, 
CR|r between a response, r, and the wait for reinforcement, R: 

 
 
where λVI is the parameter of the VI schedule and λr is the response 
rate. This function is plotted in Figure 4.

The difference between VR schedules and VI schedules in the 
functions relating the prospective contingencies to the rates of 
reinforcement and waits for reinforcement explains why a pigeon 
pecking on a VR schedule pecks much faster than a pigeon pecking 
on a VI schedule, even when the rates of reinforcement are equated 
(Catania, Matthews, Silverman, & Yohalem, 1977; cf Niv et al., 2005).
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Figure 4. The prospective contingency, CR|r between making a response, r, and the wait for 
reinforcement, R, on a VI schedule of reinforcement, as a function of the ratio between the 
rate of responding, λr, and the VI rate parameter, λVI. Semilogx scale.

In protocols where reinforcement is triggered by the first response 
after a fixed interval has elapsed since the last reinforcement (FI 
schedules), the discrete prospective contingency between r and R is 
contingent on the time elapsed since the last reinforcement, tr: When 
tr < FI, p(R|r) = 0; when tr > FI, p(R|r) = 1. Both distributions have 0 
entropy, so the subject’s uncertainty arises only from its uncertainty 
about tr. That uncertainty is a function only of its Weber fraction, w. 
In protocols, where reinforcement is triggered by the nth response 
following the last reinforcement (FR schedules), the prospective 
discrete contingency between r and R is contingent on the number of 
responses, nr made since the last reinforcement: When nr <FR, p(R|r) 
= 0; when nr > FR, p(R|r) = 1. Again, both distributions have 0 entropy, 
so the subject’s uncertainty arises only from its uncertainty about nr. 
However, tr covaries with nr, because it takes more time to make more 
responses. Therefore, the tr provides considerable information about 
nr. Thus, it is not surprising that subjects’ behavior is informed by both 
sources of information in a response-counting protocol (Light, et al, 
2019).

In the 4 basic operant protocols, VR, VI, FR and FI, the retrospective 
contingency between R and r is 1. One might conjecture that this 
maximal retrospective contingency is encoded in the brain by a 
symbolic expression to the effect that r is the efficient cause of R. 
That ‘efficient cause’ might be among the categories by which brains 
encode experience is, of course, a hypothetical construct. Skinner 
would hate it (cognitive science = creation science). Hull would reject 
it because it is not a conditioned reflex, the only kind of knowledge he 
assumed brains had (Hull, 1930). 

Perhaps it is time to move beyond Skinner and Hull, as Rescorla 
urged us to do. Rescorla was right: Associative learning is driven by 
temporal information—in the mathematically rigorous sense, the 
sense that makes it a measurable aspect of the experienced world. 
The time of occurrence of one event often provides measurable 
information about the temporal remove of another event. More 
technically, events are often stochastically connected through time. 
Insofar as the temporal relations between events persist over time, 
predictions and retrodictions may be used to anticipate future 
occurrences of the same events.

Brains have computational machinery that enables them to take 
advantage of the informative temporal relations among events to 

plan and organize behavior. Brains record where in time events occur 
(Crystal & Suddendorf, 2019; Gallistel, 1990; Panoz-Brown et al., 
2016; Danielle Panoz-Brown et al., 2018) to create a temporal map 
of the subject’s experience (Balsam & Gallistel, 2009). A temporal 
map of past experience enables a brain to compute the parameters of 
distributions and their entropies. To move ahead, the field need only 
realize that information is measured by the entropies of distributions, 
not by Bernoulli probabilities, and that the temporal information 
resides in the brain’s metric temporal map.
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